

Test Description

The MolQ Comprehensive Panel includes 500+ key solid tumor genes (for SNV, CNV, TMB, MSI and fusions) that are well characterized in the published literature and associated with oncology drugs that are FDA approved, part of NCCN guidelines, or in clinical trials.

Patient Demographic

Name: Mr. Lalan Sharma Sex: Male Date of Birth/Age: 44 years Disease: Glioblastoma PATIENTREPORT DATEBOOKING IDLalan Sharma20 December 2024#012411190115

Clinician

Clinician Name: Dr Amit Verma Medical Facility: Dr AV Institute of Personalized Cancer Therapy and Research Pathologist: Not Provided

Specimen

Booking ID: 012411190115 Sample Type: FFPE Block ID- DH23988/24 Site of Biopsy: Brain Tumor Content Percentage: 70% Date of Collection: 19-11-2024 Date of Booking: 19-11-2024

CLINICAL SYNOPSIS

Lalan Sharma, is a known case of glioblastoma. He has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULTS

No clinically relevant alterations are detected. Tumor Mutation Burden is 4.82 Muts/Mb Microsatellite Status is stable

VARIANT DETECTED AS PER NCCN GUIDELINES

No clinically relevant mutation is detected in the given specimen.

OTHER VARIANTS DETECTED

TERT (c.-124C>T, VAF= 32.88%), *PIK3CA* (p.Gln546Lys, VAF= 32.28%] and *CYP2D6* (c.506-1G>A, VAF= 65.93%) mutations are detected in the given specimen.

In addition, EGFR::EGFR (EFGRvIII) fusion is also detected.

NOTE: EGFRvIII is a negative prognostic marker in glioblastoma.

Note: MAPD failed; hence, copy number variation cannot be analyzed.

Average Base Coverage Depth achieved was 663 (X) in this sample.

Microsatellite Status is stable. TMB is 4.82 Muts/Mb.

RELEVANT GLIOBLASTOMA IDH-WILDTYPE (GRADE 4) FINDINGS

Gene	Findings	Gene	Findings
BRAF	None detected	NTRK3	None detected
EGFR	EGFRvIII	RET	None detected
NTRK1	None detected	TERT	c124C>T
NTRK2	None detected		

RELEVANT BIOMARKERS

Gene/ Transcript	Variant ID	Variant	Exon	Coverage	Allele Frequency	Clin Var	*Relevant 7	Therapies	Tier ¹
(Locus)							(In this cancer type)	(In other cancer type)	
<i>TERT</i> (NM_198253.3)	VCV001299 388	c124C>T (p.?)	-	73	32.88%	Likely pathogenic	None	None	Ia
EGFR::EGFR (chr7:55087058 - chr7:55223523)	-	EGFRvIII	-	-	-	-	None	None	Ib
<i>PIK3CA</i> (NM_006218.4)	COSM766	c.1636C>A (p.Gln546Lys)	10	1995	32.28%	Conflicting interpretatio ns of pathogenicit y	None	capivasertib + hormone therapy ^{i,ii}	IIc

*Public data sources included in relevant therapies: FDAⁱ, NCCN, EMAⁱⁱ, ESMO

¹Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

GENE FUSIONS

Genes	Variant ID	Oncomine Gene Class	Locus	Read Count
EGFR::EGFR	EGFR-EGFR.E1E8.DelPositive.2	Gain of Function	chr7:55087058 - chr7:55223523	168704

OTHER VARIANTS

Gene/ Transcript	Variant ID	Variant	Exon	Coverage	Allele Frequency	Clin Var
<i>PARP4</i> (NM_006437.4)	-	c.3285_3285+5delinsAGT (p.?)	26	17	100%	-
<i>CYP2D6</i> (NM_000106.6)	COSM5019461	c.506-1G>A (p.?)	4	135	65.93%	Likely benign drug response other

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

HRR DETAILS

Gene/Genome Alterations	Findings
Not Detected	Not Applicable

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - *BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D* and *RAD54L*.

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

PARP4 (c.3285_3285+5delinsAGT, VAF= 100.00%) is detected in the given specimen.

CLINICAL CORRELATION AND VARIANT INTERPRETATION

PARP4 c.3285_3285+5delinsAGT Coverage Frequency 17

Gene description: The *PARP4* gene encodes the poly(ADP-ribose) polymerase 4 protein¹. PARP4 belongs to the large PARP protein family that also includes PARP1, PARP2, and PARP3². PARP enzymes are responsible for the transfer of ADP-ribose, known as poly(ADPribosyl)ation or PARylation, to a variety of protein targets resulting in the recruitment of proteins involved in DNA repair, DNA synthesis, nucleic acid metabolism, and regulation of chromatin structure^{2,3}. PARP enzymes are involved in several DNA repair pathways^{2,3}. Although the functional role of PARP4 is not well understood, PARP4 has been predicted to function in base excision repair (BER) due to its BRCA1 C Terminus (BRCT) domain which is found in other DNA repair pathway proteins⁴.

Alterations and prevalence: Somatic mutations in *PARP4* are observed in 9% of skin cutaneous melanoma, 8% of uterine corpus endometrial carcinoma, 5% of bladder urothelial carcinoma, 4% of stomach adenocarcinoma, and 3% of lung squamous cell carcinoma^{5,6}. Biallelic deletions in *PARP4* are observed in 2% of diffuse large B-cell lymphoma (DLBCL)^{5,6}.

Potential relevance: Currently, no therapies are approved for *PARP4* aberrations. However, PARP inhibition is known to induce synthetic lethality in certain cancer types that are homologous recombination repair (HRR) deficient (HRD) due to mutations in the HRR pathway. This is achieved from PARP inhibitors (PARPi) by promoting the accumulation of DNA damage in cells with HRD, consequently resulting in cell death^{7.8}. Although not indicated for specific alterations in PARP4, several PARPis including olaparib, rucaparib, talazoparib, and niraparib have been approved in various cancer types with HRD. Olaparib⁹ (2014) was the first PARPi to be approved by the FDA for BRCA1/2 aberrations. Originally approved for the treatment of germline variants, olaparib is now indicated (2018) for the maintenance treatment of both germline BRCA1/2-mutated (gBRCAm) and somatic BRCA1/2-mutated (sBRCAm) epithelial ovarian, fallopian tube, or primary peritoneal cancers that are responsive to platinum-based chemotherapy. Olaparib is also indicated for the treatment of patients with gBRCAm HER2-negative metastatic breast cancer and metastatic pancreatic adenocarcinoma. Additionally, olaparib⁹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes BRCA1. Rucaparib¹⁰ (2016) was the first PARPi approved for the treatment of patients with either gBRCAm or sBRCAm epithelial ovarian, fallopian tube, or primary peritoneal cancers and is also approved (2020) for deleterious gBRCAm or sBRCAm mCRPC. Talazoparib¹¹ (2018) is indicated for the treatment of gBRCAm HER2-negative locally advanced or metastatic breast cancer. Niraparib¹² (2017) is another PARPi approved for the treatment of epithelial ovarian, fallopian tube, or primary peritoneal cancers with a deleterious or suspected deleterious BRCA mutation.

REFERENCES

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Amé et al. The PARP superfamily. Bioessays. 2004 Aug;26(8):882-93. PMID: 15273990
- 3. Morales et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15-28. PMID: 24579667
- 4. Prawira et al. Assessment of PARP4 as a candidate breast cancer susceptibility gene. Breast Cancer Res Treat. 2019 Aug;177(1):145-153. PMID: 31119570
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

PATIENTREPORT DATEBOOKING IDLalan Sharma20 December 2024#012411190115

4. PMID: 22588877

- 7. Pilié et al. PARP Inhibitors: Extending Benefit Beyond BRCA-Mutant Cancers. Clin Cancer Res. 2019 Jul 1;25(13):3759-3771. PMID:30760478
- 8. Lord et al. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017 Mar 17;355(6330):1152-1158. PMID: 28302823
- 9. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/209115s013lbl.pdf
- 11. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/211651s012lbl.pdf
- 12. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208447s027lbl.pdf

PIK3CA p.Gln546Lys Coverage Frequency 1995

Gene description: The *PIK3CA* gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases^{2,3}. The p110 catalytic subunits include p110α, β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD and PIK3CG, respectively². PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{4,5}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism⁴⁻⁷. Recurrent somatic alterations in *PIK3CA* are frequent in cancer and result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability⁸⁻¹⁰.

Alterations and prevalence: Recurrent somatic activating mutations in *PIK3CA* are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck and colorectal cancers^{11,12}. Activating mutations in *PIK3CA* commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{13,14}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation¹⁵⁻¹⁷. *PIK3CA* resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{11,12}.

Potential relevance: The PI3K inhibitor, alpelisib¹⁸, is FDA approved (2019) in combination with fulvestrant for the treatment of patients with *PIK3CA*-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer¹⁹. Additionally, a phase Ib study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)- positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in *PIK3CA*-mutated tumors and 20% (2/20) in *PIK3CA* wild-type tumors²⁰. Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations²⁰. However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with *PIK3CA* mutated refractory cancers^{22,23}. The FDA also approved the kinase inhibitor, capivasertib (2023)²⁴ in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment.

REFERENCES

- 1. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 2. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 3. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 4. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 5. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 6. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 7. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 8. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 9. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 10. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 11. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clin Med Insights Oncol. 2022;16:11795549211068804. PMID: 35023985

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

- Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
 Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 16. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 17. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212526s009lbl.pdf
- 19. NCCN Guidelines® NCCN-Breast Cancer [Version 2.2024]
- 20. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 21. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 22. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 23. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929
- 24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/218197s000lbl.pdf

CYP2D6 c.506-1G>A Coverage Frequency 135

Gene description: The *CYP2D6* gene encodes cytochrome P450 family 2 subfamily D member 6, a member of the cytochrome P450 superfamily of proteins¹. The cytochrome P450 proteins are monooxygenases that play important roles in the biotransformation of xenobiotics and carcinogens, and the synthesis of cholesterol, steroids and other lipids^{1,2}. CYP2D6 is a key enzyme involved in the biotransformation of the prodrug tamoxifen to its active metabolites, endoxifen and 4-hydroxytamoxifen^{3,4}. The *CYP2D6* gene is highly polymorphic, and inherited *CYP2D6* polymorphisms in individuals may result in absent, reduced, normal, or high CYP2D6 enzyme activity leading to poor, intermediate, normal, or ultrarapid metabolism of tamoxifen³⁻⁶. *CYP2D6* genotype may impact response to tamoxifen treatment and clinical outcomes⁵.

Alterations and prevalence: Somatic mutations in *CYP2D6* are observed in 4% of uterine corpus endometrial carcinoma, 3% of stomach adenocarcinoma and cholangiocarcinoma, and 2% of colorectal adenocarcinoma, skin cutaneous melanoma, and kidney chromophobe^{7,8}. Biallelic loss of *CYP2D6* is observed in 2% of ovarian serous cystadenocarcinoma^{7,8}. Amplification of *CYP2D6* is observed in 4% of skin cutaneous melanoma, 3% of cholangiocarcinoma, and 2% of pancreatic adenocarcinoma^{7,8}.

Potential relevance: Currently, no therapies are approved for CYP2D6.

REFERENCES

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- Schmelzle et al. Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins Other Lipid Mediat. 2011 Feb;94(1-2):25-33. PMID: 21167292
- Brooks et al. CYP2D6 phenotype, tamoxifen, and risk of contralateral breast cancer in the WECARE Study. Breast Cancer Res. 2018 Dec 10;20(1):149. PMID: 30526633
- Dezentjé et al. Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin Cancer Res. 2009 Jan 1;15(1):15-21. PMID: 19118028
- 5. He et al. CYP2D6 Genotype Predicts Tamoxifen Discontinuation and Prognosis in Patients With Breast Cancer. J Clin Oncol. 2020 Feb 20;38(6):548-557. PMID: 31800347
- 6. Hertz et al. In vivo assessment of the metabolic activity of CYP2D6 diplotypes and alleles. Br J Clin Pharmacol. 2015 Nov;80(5):1122-30. PMID: 25907378
- 7. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 8. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877

TERTc.-124C>TCoverage Frequency 73

Gene description: The *TERT* gene encodes telomerase reverse transcriptase, a component of the telomerase core enzyme along with internal telomerase RNA template (TERC)¹. TERT is repressed in most differentiated cells, resulting in telomerase silencing¹. In cancer, telomerase reactivation is known to contribute to cellular immortalization^{1,2}. Increased TERT expression results in telomerase activation, allowing for unlimited cancer cell proliferation through telomere stabilization¹. In addition to its role in telomerase maintenance, TERT also possesses RNA-dependent RNA polymerase activity, the deregulation of which can promote oncogenesis by facilitating mitotic progression and cancer cell stemness, supporting an oncogenic role for TERT¹.

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Alterations and prevalence: Somatic mutations in *TERT* are observed in 4% of melanoma and uterine carcinosarcoma, and 3% of kidney renal papillary cell carcinoma^{3,4}. Additionally, *TERT* promoter mutations causing upregulation are observed in many cancer types, especially non-aural cutaneous melanoma (80% of cases), and glioblastoma (70% of cases)19. Specifically, *TERT* promoter mutations at C228T and C250T have been observed to be recurrent and result in *de novo* binding sites for ETS transcription factors, resulting in enhanced TERT transcription¹. Amplifications are observed in 14% of esophageal cancer and lung squamous cell carcinoma, 13% of adrenal cell carcinoma and lung adenocarcinoma, and 9% of bladder and ovarian cancer^{3,4}. TERT is overexpressed in over 85% of tumors and is considered a universal tumor associated antigen⁵.

Potential relevance: Currently, no therapies are approved for *TERT* aberrations. Due to its immunogenicity and near-universal expression on cancer cells, TERT has been a focus of immunotherapy research including peptide, dendritic, and DNA vaccines as well as T-cell therapy⁵.

REFERENCES

- 1. Yuan et al. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene. 2019 Aug;38(34):6172-6183. PMID: 31285550
- 2. Colebatch et al. TERT gene: its function and dysregulation in cancer. J Clin Pathol. 2019 Apr;72(4):281-284. PMID: 30696697
- 3. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 4. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 5. Mizukoshi et al. Telomerase-Targeted Cancer Immunotherapy. Int J Mol Sci. 2019 Apr 12;20(8). PMID: 31013796

EGFR EGFRvIII

Gene description: The *EGFR* gene encodes the epidermal growth factor receptor (EGFR) tyrosine kinase, a member of the ERBB/human epidermal growth factor receptor (HER) family. In addition to EGFR/ERBB1/HER1, other members of the ERBB/HER family include ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4¹. EGFR ligand induced dimerization results in kinase activation and leads to stimulation of oncogenic signaling pathways including the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways. Activation of these pathways promote cell proliferation, differentiation, and survival^{2,3}.

Alterations and prevalence: Recurrent somatic mutations in the tyrosine kinase domain (TKD) of EGFR are observed in approximately 10-20% of lung adenocarcinoma, and at higher frequencies in never-smoker, female, and Asian populations⁴⁻⁷. The most common mutations occur near the ATP-binding pocket of the TKD and include short in-frame deletions in exon 19 (*EGFR* exon 19 deletion) and the L858R amino acid substitution in exon 21⁸. These mutations constitutively activate EGFR resulting in downstream signaling, and represent 80% of the *EGFR* mutations observed in lung cancer. A second group of less prevalent activating mutations include E709K, G719X, S768I, L861Q and short in-frame insertion mutations in exon 20⁹⁻¹². *EGFR* activating mutations in lung cancer tend to be mutually exclusive to *KRAS* activating mutations¹³. In contrast, a different set of recurrent activating EGFR mutations of *EGFR* is observed in several cancer types including 30% of glioblastoma, 12% of esophageal cancer, 10% of head and neck cancer, 5% of bladder cancer and 5% of lung squamous cell carcinoma^{4,5,7,14,15}. Deletion of exons 2-7, encoding the extracellular domain of EGFR (EGFRvIII), results in overexpression of a ligand-independent constitutively active protein and is observed in approximately 30% of glioblastoma¹⁶⁻¹⁸.

Potential relevance: Approved first-generation EGFR tyrosine kinase inhibitors (TKIs) include erlotinib¹⁹ (2004) and gefitinib²⁰ (2015), which block the activation of downstream signaling by reversible interaction with the ATP-binding site. Although initially approved for advanced lung cancer, the discovery that drug sensitivity was associated with exon 19 and exon 21 activating mutations allowed first-generation TKIs to become subsequently approved for front-line therapy in lung cancer tumors containing exon 19 or exon 21 activating mutations. Second-generation TKIs afatinib²¹ (2013) and dacomitinib²² (2018) bind EGFR and other ERBB/HER gene family members irreversibly and were subsequently approved. First- and second-generation TKIs afatinib, dacomitinib, erlotinib, and gefitinib are recommended for the treatment NSCLC harboring *EGFR* exon 19 insertions, except p.A763_Y764insFQEA, confer resistance to the same therapies²³⁻²⁶. However, BDTX-189²⁷ was granted a fast-track designation (2020) for the treatment of solid tumors harboring an *EGFR* exon 20 insertion mutations. In 2022, the FDA granted breakthrough therapy designation to the irreversible EGFR inhibitors, CLN-081 (TPC-064)²⁸ and sunvozertinib²⁹, for locally advanced or metastatic non-small cell lung cancer harboring EGFR exon 20 insertion mutations. In lung cancer containing *EGFR* exon 19 or 21

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

activating mutations, treatment with TKIs is eventually associated with the emergence of drug resistance³⁰. The primary resistance mutation that emerges following treatment with first-generation TKI is T790M, accounting for 50-60% of resistant cases⁸. Third generation TKIs were developed to maintain sensitivity in the presence of T790M. Osimertinib³¹ (2015) is an irreversible inhibitor indicated for metastatic EGFR T790M positive lung cancer and for the first-line treatment of metastatic NSCLC containing EGFR exon 19 deletions or exon 21 L858R mutations. Like first-generation TKIs, treatment with osimertinib is associated with acquired resistance. In this case, resistance is associated with the C797S mutation and occurs in 22-44% of cases³⁰. The T790M and C797S mutations may be each selected following sequential treatment with a first-generation TKI followed by a third-generation TKI or vice versa³². T790M and C797S can occur in either *cis* or *trans* allelic orientation³². If C797S is observed following progression after treatment with a third-generation TKI in the first-line setting, sensitivity may be retained to first-generation TKIs³². If C797S cooccurs in trans with T790M following sequential treatment with first- and third-generation TKIs, patients may exhibit sensitivity to combination first- and third-generation TKIs, but resistance to third-generation TKIs alone^{32,33}. However, C797S occurring in cis conformation with T790M, confers resistance to first- and third-generation TKIs³². Fourth-generation TKIs are in development to overcome acquired C797S and T790M resistance mutations after osimertinib treatment. BDTX-1535³⁴, a CNS penetrating small molecule inhibitor, received fast track designation (2024) from the FDA for the treatment of patients with EGFR C797S positive NSCLC who have disease progression on or after a third-generation EGFR TKI. EGFR targeting antibodies including cetuximab (2004), panitumumab (2006), and necitumumab (2016) are under investigation in combination with EGFR-targeting TKIs for efficacy against EGFR mutations. The bispecific antibody, amivantamab³⁵, targeting EGFR and MET was approved (2021) for NSCLC tumors harboring EGFR exon 20 insertion mutations. A small molecule kinase inhibitor, lazertinib³⁶, was approved (2024) in combination with amivantamab as a first-line treatment for adult patients with locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations. In 2024, a CNS penetrating small molecule, ERAS-801³⁷ received fast track designation for the treatment of adult patients with EGFR altered glioblastoma. HLX-42³⁸, an anti-EFGR-antibody-drug conjugate (ADC) consisting of an anti-EGFR monoclonal antibody conjugated with a novel high potency DNA topoisomerase I (topo I) inhibitor, received a fast-track designation (2024) for the treatment of patients with advanced or metastatic EGFR-mutated nonsmall cell lung cancer whose disease has progressed on a third-generation EGFR tyrosine kinase inhibitor. CPO301³⁹ received a fast-track designation (2023) from the FDA for EGFR mutations in patients with metastatic NSCLC who are relapsed/refractory or ineligible for EGFR targeting therapy such as 3rd generation EGFR inhibitors including osimertinib. The Oncoprex immunogene therapy quaratusugene ozeplasmid⁴⁰ in combination with osimertinib received a fast-track designation from the FDA (2020) for NSCLC tumors harboring EGFR mutations that progressed on osimertinib alone.

REFERENCES

- 1. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 2. Zhixiang. ErbB Receptors and Cancer. Methods Mol. Biol. 2017;1652:3-35. PMID: 28791631
- 3. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Pines et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010 Jun 18;584(12):2699-706. PMID: 20388509
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 8. da et al. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69. doi: 10.1146/annurev-pathol-011110-130206. PMID: 20887192
- 9. Arcila et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol. Cancer Ther. 2013 Feb;12(2):220-9. PMID: 23371856
- 10. Kobayashi et al. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs. Clin Cancer Res. 2015 Dec 1;21(23):5305-13. doi: 10.1158/1078-0432.CCR-15-1046. Epub 2015 Jul 23. PMID: 26206867
- 11. Yasuda et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013 Dec 18;5(216):216ra177. PMID: 24353160
- 12. Chiu et al. Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Treatment Response in Advanced Lung Adenocarcinomas with G719X/L861Q/S768I Mutations. J Thorac Oncol. 2015 May;10(5):793-9. PMID: 25668120
- 13. Karachaliou et al. KRAS mutations in lung cancer. Clin Lung Cancer. 2013 May;14(3):205-14. PMID: 23122493
- 14. Brennan et al. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-77. PMID: 24120142
- 15. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- 16. Mitsudomi et al. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 2010 Jan; 277(2): 301-8. PMID: 19922469
- 17. Gazdar. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009 Aug;28 Suppl 1:S24-31. PMID: 19680293
- 18. Gan et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009 Jun;16(6):748-54. PMID: 19324552

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

PATIENTREPORT DATEBOOKING IDLalan Sharma20 December 2024#012411190115

Comprehensive Panel- 500 Genes

- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021743s025lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/206995s004lbl.pdf
- 21. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/201292s017lbl.pdf
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/211288s003lbl.pdf
- 23. NCCN Guidelines® NCCN-Non-Small Cell Lung Cancer [Version 10.2024]
- 24. Naidoo et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: Clinical outcomes and response to erlotinib. Cancer. 2015 Sep 15;121(18):3212-3220. PMID: 26096453
- 25. Vyse et al. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 2019;4:5. PMID: 30854234
- 26. Yi et al. A comparison of epidermal growth factor receptor mutation testing methods in different tissue types in non-small cell lung cancer. Int J Mol Med. 2014 Aug;34(2):464-74. PMID: 24891042
- $27.\ https://investors.blackdiamondtherapeutics.com/news-releases/news-release-details/black-diamond-therapeutics-granted-fasttrack-designation-fdamond-therapeutics-granted-fasttrack-designation-fasttrack-designation-fdamond-therapeutics-granted-fasttrack-designation-fdamond-therapeutics-granted-fasttrack-designation-fasttrack-designation-fasttrack-designation-fdamond-therapeutics-granted-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fasttrack-designation-fas$
- 28. https://investors.cullinanoncology.com/news-releases/news-release-details/fda-grants-breakthrough-therapy-designationcullinan-oncologys
- 29. https://www.prnewswire.com/news-releases/fda-grants-breakthrough-therapy-designation-for-dizal-pharmaceuticals-dzd9008-inpatients-with-locallyadvanced-or-metastatic-non-small-cell-lung-cancer-harboring-egfr-exon20-insertion-301469692.html
- 30. Madic et al. EGFR C797S, EGFR T790M and EGFR sensitizing mutations in non-small cell lung cancer revealed by six-color crystal digital PCR. Oncotarget. 2018 Dec 21;9(100):37393-37406. PMID: 30647840
- 31. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/208065s033lbl.pdf
- 32. Niederst et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. Clin. Cancer Res. 2015 Sep 1;21(17):3924-33. PMID: 25964297
- 33. Wang et al. Lung Adenocarcinoma Harboring EGFR T790M and In Trans C797S Responds to Combination Therapy of First- and Third-Generation EGFR TKIs and Shifts Allelic Configuration at Resistance. J Thorac Oncol. 2017 Nov;12(11):1723-1727. PMID: 28662863
- 34. https://investors.blackdiamondtherapeutics.com//news-releases/news-release-details/black-diamond-therapeutics-announcescorporate-update-and
- 35. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/761210s004lbl.pdf
- 36. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219008s000lbledt.pdf
- 37. https://investors.erasca.com//news-releases/news-release-details/erasca-granted-fda-fast-track-designation-cns-penetrant-egfr
- 38. https://iis.aastocks.com/20231227/11015917-0.PDF
- 39. http://iis.aastocks.com/20230612/10770455-0.PDF
- 40. https://www.genprex.com/news/genprex-receives-u-s-fda-fast-track-designation-for-gene-therapy-that-targets-lung-cancer/

RECOMMENDATIONS

• Genetic counselling is advised for interpretation on the consequences of the variant(s).

stinder Kaws

Jatinder Kaur, PhD Head, Molecular Biology & Genomics

Wish

Dr. Gulshan Yadav, MD Head, Pathology

APPENDIX 1: TEST METHODOLOGY

Method

Pathology Assessment

The FFPE block is reviewed for presence of tumor cells and tumor percentage by histopathologists through screening of H & E staining slides.

Assay Methods

The test was performed using the Oncomine Comprehensive Assay Plus targeted, amplicon based next-generation sequencing assay that analyses 500+ unique genes for SNV, CNV, TMB, MSI and fusions. The minimum of 20ng of DNA isolated by Qiagen nucleic acid isolation kit is amplified using Oncomine Comprehensive assay plus as per the instruction manual. The amplicon libraries are prepared from 4 pools of primer which includes 2 pools of DNA based targets. The amplified primer pools are enzyme fragmented and Ion adapter barcodes are added. Amplified library is purified followed by quantitation using Ion Library TaqManTM Quantitation Kit. The quality of amplified libraries having 150-200bp sizes are confirmed by Agilent TapeStation. The quantified pooled library is loaded on Ion 550 Chip using Ion Chef and sequencing is performed on the Ion GeneStudio S5 prime system. For the current report RNA was not included.

Secondary Analysis Methods

The sequence data is processed using Ion Torrent server and the Ion reporter software 5.20.2.0. TMB is reported as High (>10 mutations/Mb), Intermediate (>3 to 10 mutations/Mb) and Low (<3 mutations/Mb). All the reported alterations are manually curated using Integrative Genomics Viewer (IGV). The Final report is generated using oncomine knowledgebase which includes contextual investigations of sample-specific variants with respect to labels, guidelines (AMP, ASCO, CAP), current clinical trials and peer-reviewed literature which is frequently updated.

Genes Assayed

The panel covers 1.50M bases of DNA region, including 1.06M bases of exonic regions. It includes a total of 500+ genes covering 165 hotspot genes, 333 genes with focal CNV gains and loss, 227 genes with full coding sequence (CDS), >1 Mb exonic regions for TMB evaluation and 76 MSI markers for Microsatellite Instability (MSI) and Microsatellite stable (MSS). It also covers 46 genes (SNVs, Indels, CNVs) for homologous recombination deficiency (HRD) including BRCA1 and BRCA2. A subset of these (20 genes) were assessed for determining Loss of Heterozygosity (LOH) at gene level. Details available on request.

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic , diagnostic , and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from
		experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well- powered
		studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis
		and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports
		with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV: Benign or		Observed at significant allele frequency in the general or specific subpopulation databases.
Likely Benign Variants		

AMP/ASCO/CAP Classification

DISCLAIMER

• This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

PATIENTREPORT DATEBOOKING IDLalan Sharma20 December 2024#012411190115

Comprehensive Panel- 500 Genes

the quality or accuracy of the report.

- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.
- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

LIMITATIONS

- Testing has been performed assuming that the sample received belongs to the above-named individual(s) and any stated relationships between individuals are accepted as true.
- Due to inherent technology limitations, coverage is not uniform across all regions. Hence pathogenic variants present in areas of insufficient coverage may not be analyzed/ reported.
- Variants with very low allele frequency (<5%) present in the given specimen or lower copy number variation might not be detected. Similarly fusion variants with less read may not be detected. Variant detection is also based on tumor percentage and affected by tumor heterogeneity. The FFPE fixation issues and the age of the block also widely affects the genomic findings.
- The classification and interpretation of all the variants in this assay reflects the current state of scientific understanding at the time this report was issued. In some instances, the classification and interpretation of such variants may change as new scientific information comes to light.

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

- Test results should be interpreted in context of clinical findings, tumor sampling, histopathology, and other laboratory data.
- If results obtained do not match other clinical laboratory findings, please contact the laboratory for possible. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- Genetic testing is highly accurate. Rarely, inaccurate results may occur for various reasons. These reasons include, but are not limited to mislabelled samples, inaccurate reporting of clinical/medical information, rare technical errors or unusual circumstances such as bone marrow transplantation, blood transfusion; or the presence of change(s) in such a small percentage of cells that may not be detectable by the test (mosaicism).

APPENDIX 2: GENE LIST

HOTSPOT GENES

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABL1	ABL2	ACVR1	AKT1	AKT2	AKT3	ALK
AR	ARAF	ATP1A1	AURKA	AURKC	AXL	BCL2
BCL2L12	BCL6	BCR	BMP5	BRAF	BTK	CACNA1D
CARD11	CBL	CCND1	CCND2	CCND3	CCNE1	CD79B
CDK4	CDK6	CHD4	CSF1R	CTNNB1	CUL1	CYSLTR2
DDR2	DGCR8	DROSHA	E2F1	EGFR	EIF1AX	EPAS1
ERBB2	ERBB3	ERBB4	ESR1	EZH2	FAM135B	FGF7
FGFR1	FGFR2	FGFR3	FGFR4	FLT3	FLT4	FOXA1
FOXL2	FOXO1	GATA2	GLI1	GNA11	GNAQ	GNAS
H2BC5	H3-3A	H3-3B	НЗС2	HIF1A	HRAS	IDH1
IDH2	IKBKB	IL6ST	IL7R	IRF4	IRS4	KDR
KIT	KLF4	KLF5	KNSTRN	KRAS	MAGOH	MAP2K1
MAP2K2	MAPK1	MAX	MDM4	МЕСОМ	MED12	MEF2B
MET	MITF	MPL	MTOR	МҮС	MYCN	MYD88
MYOD1	NFE2L2	NRAS	NSD2	NT5C2	NTRK1	NTRK2
NTRK3	NUP93	PAX5	PCBP1	PDGFRA	PDGFRB	PIK3C2B
PIK3CA	<i>РІКЗСВ</i>	PIK3CD	PIK3CG	PIK3R2	PIM1	PLCG1
PPP2R1A	РРР6С	PRKACA	PTPN11	PTPRD	PXDNL	RAC1
RAF1	RARA	RET	RGS7	RHEB	RHOA	RICTOR
RIT1	ROS1	RPL10	SETBP1	SF3B1	SIX1	SIX2
SLCO1B3	SMC1A	SMO	SNCAIP	SOS1	SOX2	SPOP
SRC	SRSF2	STAT3	STAT5B	STAT6	TAF1	TERT
TGFBR1	TOP1	TPMT	TRRAP	TSHR	U2AF1	USP8
WAS	XPO1	ZNF217	ZNF429			

CNVs GAIN

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ADAMTS12	ADAMTS2	BMPR2	CSMD3	<i>DOCK3</i>	ADAMTS12	ADAMTS2
ERAP1	ERAP2	HLA-A	PDIA3	PMS1	ERAP1	ERAP2
RECQL4	TAP1	TAP2	TP63	TPP2		

CNVs AND HOTSPOT

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ADL1	4.01.2	A 1700-1		4 1/17/2	A 1. 1Z	4.D
ABLI	ABLZ	AKTI	AKIZ	AKI3	ALK	AR
ARAF	AURKA	AURKC	AXL	BCL2	BCL2L12	BCL6
BRAF	CARD11	CBL	CCND1	CCND2	CCND3	CCNE1
CDK4	CDK6	CHD4	DDR2	EGFR	EIF1AX	ERBB2
ERBB3	ERBB4	ESR1	EZH2	FAM135B	FGFR1	FGFR2
FGFR3	FGFR4	FLT3	FLT4	FOXA1	GATA2	GNAS
H3-3A	H3-3B	IDH2	IKBKB	IL7R	KDR	KIT
KLF5	KRAS	MAGOH	MAP2K1	MAPK1	MAX	MDM4
МЕСОМ	MEF2B	MET	MITF	MPL	MTOR	МҮС

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

PATIENT	REPORT DATE	BOOKING ID
Lalan Sharma	20 December 2024	#012411190115

MYCN	MYD88	NFE2L2	NRAS	NTRK1	NTRK3	PCBP1
PDGFRA	PDGFRB	PIK3C2B	РІКЗСА	<i>РІКЗСВ</i>	PIK3R2	PIM1
PLCG1	PPP2R1A	РРР6С	PRKACA	PTPN11	PXDNL	RAC1
RAF1	RARA	RET	RHEB	RICTOR	RIT1	ROS1
SETBP1	SF3B1	SLCO1B3	SMC1A	SMO	SPOP	SRC
STAT3	STAT6	TERT	TOP1	TPMT	U2AF1	USP8
XPO1	ZNF217	ZNF429				

GENE FUSION (Inter and Intra genetic)

Gene	Gene	Gene	Gene	Gene	Gene	Gene
AKT1	AKT2	AKT3	ALK	AR	BRAF	BRCA1
CDKN2A	EGFR	ERBB2	ERBB4	ERG	ESR1	ETV1
ETV4	ETV5	FGFR1	FGFR2	FGFR3	MAP3K8	MET
MTAP	MYB	MYBL1	NOTCH1	NOTCH2	<i>NOTCH3</i>	NRG1
NTRK1	NTRK2	NTRK3	NUTM1	<i>РІКЗСА</i>	<i>РІКЗСВ</i>	PPARG
PRKACA	PRKACB	RAF1	RARA	RELA	RET	ROS1
RSPO2	RSP03	STAT6	TERT	TFE3	TFEB	YAP1

CNV LOSS AND CDS

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABRAXAS1	ACVR1B	ACVR2A	ADAMTS12	ADAMTS2	AMER1	APC
ARHGAP35	ARID1A	ARID1B	ARID2	ARID5B	ASXL1	ASXL2
ATM	ATR	ATRX	AXIN1	AXIN2	B2M	BAP1
BARD1	BCOR	BLM	BMPR2	BRCA1	BRCA2	BRIP1
CASP8	CBFB	CD274	CD276	CDC73	CDH1	CDH10
CDK12	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CHEK1
CHEK2	CIC	CREBBP	CSMD3	CTCF	CTLA4	CUL3
CUL4A	CUL4B	CYLD	СҮР2С9	DAXX	DDX3X	DICER1
DNMT3A	DOCK3	DPYD	DSC1	DSC3	ELF3	ENO1
EP300	EPCAM	EPHA2	ERAP1	ERAP2	ERCC2	ERCC4
ERRFI1	ETV6	FANCA	FANCC	FANCD2	FANCE	FANCF
FANCG	FANCI	FANCL	FANCM	FAT1	FBXW7	FUBP1
GATA3	GNA13	GPS2	HDAC2	HDAC9	HLA-A	HLAB
HNF1A	INPP4B	JAK1	JAK2	JAK3	KDM5C	KDM6A
KEAP1	KMT2A	KMT2B	КМТ2С	KMT2D	LARP4B	LATS1
LATS2	MAP2K4	MAP2K7	MAP3K1	MAP3K4	MAPK8	MEN1
MGA	MLH1	MLH3	MRE11	MSH2	MSH3	MSH6
MTAP	MUTYH	NBN	NCOR1	NF1	NF2	NOTCH1
NOTCH2	<i>NOTCH3</i>	NOTCH4	PALB2	PARP1	PARP2	PARP3
PARP4	PBRM1	PDCD1	PDCD1LG2	PDIA3	PGD	PHF6
PIK3R1	PMS1	PMS2	POLD1	POLE	POT1	PPM1D
PPP2R2A	PRDM1	PRDM9	PRKAR1A	PTCH1	PTEN	PTPRT
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L
RASA1	RASA2	RB1	RBM10	RECQL4	RNASEH2A	RNASEH2B
RNF43	RPA1	RUNX1	SDHA	SDHB	SDHD	SETD2
SLX4	SMAD2	SMAD4	SMARCA4	SMARCB1	SOX9	SPEN
STAG2	STK11	SUFU	TAP1	TAP2	TBX3	TCF7L2

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

PATIENTREPORT DATEBOOKING IDLalan Sharma20 December 2024#012411190115

Comprehensive Panel- 500 Genes

TET2	TGFBR2	TNFAIP3	TNFRSF14	TP53	TP63	TPP2
TSC1	TSC2	USP9X	VHL	WT1	XRCC2	XRCC3
ZFHX3	ZMYM3	ZRSR2				

CDS ONLY

Gene	Gene	Gene	Gene	Gene	Gene	Gene
CALR	CIITA	CYP2D6	ERCC5	FAS	ID3	KLHL13
MTUS2	PSMB10	PSMB8	PSMB9	RNASEH2C	RPL22	RPL5
RUNX1T1	SDHC	SOCS1	STAT1	TMEM132D	UGT1A1	ZBTB20

TMB ONLY

Gene	Gene	Gene	Gene	Gene	Gene	Gene
A1CF	ACSM2B	ADAM18	ANO4	ARMC4	AURKB	BRINP3
С6	C8A	C8B	CANX	CASR	CD163	CNTN6
CNTNAP4	CNTNAP5	COL11A1	DCAF4L2	DCDC1	GALNT17	GPR158
GRID2	H1-4	HCN1	HLA-C	KCND2	KCNH7	KCNJ5
KEL	KIR3DL1	KRTAP21-1	KRTAP6-2	LRRC7	MARCO	NLRC5
NOL4	NRXN1	NYAP2	OR10G8	OR2G6	OR2L13	OR2L2
OR2L8	OR2M3	OR2T3	OR2T33	OR2T4	OR2W3	OR4A15
OR4C15	OR4C6	OR4M1	OR4M2	OR5D18	OR5F1	OR5L1
OR5L2	OR6F1	OR8H2	OR812	OR8U1	ORC4	PAK5
PCDH17	PDE1A	PDE1C	PLXDC2	POM121L12	PPFIA2	RBP3
REG1A	REG1B	REG3A	REG3G	RPTN	RUNDC3B	SH3RF2
SLC15A2	SLC8A1	SYT10	SYT16	TAPBP	TOP2A	TPTE
TRHDE	TRIM48	TRIM51	ZIM3	ZNF479	ZNF536	