Test Description

The MolQ Comprehensive Panel includes 500+ key solid tumor genes (for SNV, CNV, TMB, MSI and fusions) that are well characterized in the published literature and associated with oncology drugs that are FDA approved, part of NCCN guidelines, or in clinical trials.

Patient Demographic

Name: Ms Asha Gehlot

Sex: Female

Date of Birth/Age: 64 years

Disease: Metastatic Breast Carcinoma

Asha Gehlot

PATIENT

10 July 2024

REPORT DATE BOOKING ID #012406250122

Clinician

Clinician Name: Dr Amit Verma

Medical Facility: Dr AV Institute of Personalized Therapy

and Cancer Research (IPTCR) Pathologist: Not Provided

Specimen

Booking ID: 012406250122

Sample Type: FFPE Block ID-4443-B

Site of Biopsy: Liver

Tumor Content Percentage: 70% Date of Collection: 25-06-2024 **Date of Booking**: 25-06-2024

CLINICAL SYNOPSIS

Asha Gehlot, is a known case of HR positive. HER2 negative, infiltrating ductal carcinoma, right breast with metastasis to bones, liver and abdominal lymph nodes. She has been evaluated for pathogenic variations in the genes listed in Appendix 2

RESULTS

Clinically relevant alteration is detected in PIK3CA gene.

Microsatellite Instability (MSI) is stable.

VARIANT DETECTED AS PER NCCN GUIDELINES

Clinically relevant PIK3CA (p.His1047Arg, VAF= 76.2%) mutation is detected in the given specimen.

OTHER VARIANTS DETECTED

Not detected.

Note: MAPD failed; hence, copy number variation cannot be analyzed.

Average Base Coverage Depth achieved was 663 (X) in this sample.

Microsatellite Status is stable. TMB cannot be analyzed due to high deamination score.

RELEVANT HEPATOCELLUALR CARCINOMA FINDINGS

Gene	Findings	Gene	Findings	
AKT1	None detected	NTRK2	None detected	
BRAF	None detected	NTRK3	None detected	
ERBB2	None detected	PIK3CA	p.His1047Arg	
ESR1	None detected	PTEN	None detected	
NTRK1	None detected	RET	None detected	

RELEVANT BIOMARKERS

Gene/ Transcript (Locus)	Variant ID	Variant	Exon	Coverage	Allele Frequency	Variant Effect	*Relevant (In this cancer type)	•	Tier ²
PIK3CA (chr3:178952085)	COSM775	c.3140A>G (p.His1047Arg)	21	543	76.24%	Missense	alpelisib + hormone therapy ^{i,ii} capivasertib + hormone therapy ⁱ	None	Ia

^{*}Public data sources included in relevant the rapies: FDA $^{\rm i}$, NCCN, EMA $^{\rm ii}$, ESMO

HRR DETAILS

Gene/Genome Alterations	Findings
BRCA1	SNV, G1232S, AF:0.07
BRCA1	SNV, S1139N, AF:0.12
BRCA1	SNV, L1128M, AF:0.27
BRCA1	SNV, E29D, AF:0.06
BRCA2	SNV, S196N, AF:0.19
BRCA2	SNV, S234F, AF:0.07
BRCA2	SNV, V295I, AF:0.24
BRCA2	SNV, P814H, AF:0.34
BRCA2	SNV, E887K, AF:0.08
BRCA2	SNV, P1145S, AF:0.06
BRCA2	SNV, L1334S, AF:0.09
BRCA2	SNV, S1970L, AF:0.1
BRCA2	SNV, E2070K, AF:0.06
BRCA2	SNV, P2246L, AF:0.09
BRCA2	SNV, T2388I, AF:0.08
BRCA2	SNV, Q2829R, AF:0.09
BRCA2	SNV, L3087F, AF:0.13
BRCA2	SNV, P3089L, AF:0.06
BRCA2	SNV, V3290I, AF:0.15
ATM	SNV, T655I, AF:0.14
ATM	SNV, V1385M, AF:0.08
ATM	SNV, K1434R, AF:0.07
ATM	SNV, D1563N, AF:0.08
ATM	SNV, P1843S, AF:0.16
ATM	SNV, D1963Y, AF:1.0
ATM	SNV, V2288I, AF:0.07
ATM	SNV, R2392Q, AF:0.2
ATM	SNV, M2531I, AF:0.11
BARD1	SNV, P530L, AF:0.08
BARD1	SNV, L480F, AF:0.05
BARD1	SNV, P411L, AF:0.14
BARD1	SNV, G345R, AF:0.05
BARD1	SNV, S251N, AF:0.18
BARD1	SNV, T54I, AF:0.09
BRIP1	SNV, A1125T, AF:0.11
BRIP1	SNV, G809D, AF:0.05
BRIP1	SNV, S469N, AF:0.1

 $^{^1}$ Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Comprehensive Panel-500 Genes

BRIP1	SNV, S309F, AF:0.22
BRIP1	SNV, G304E, AF:0.06
BRIP1	SNV, R294K, AF:0.06
CDK12	SNV, M415I, AF:0.07
CDK12	SNV, G422S, AF:0.05
CDK12	SNV, E471K, AF:0.09
CDK12	SNV, E485K, AF:0.08
CDK12	SNV, M821I, AF:0.13
CDK12	SNV, G1454R, AF:0.06
CHEK1	SNV, E50K, AF:0.07
CHEK2	SNV, S516F, AF:0.16
CHEK2	SNV, P350L, AF:0.06
CHEK2	SNV, R240K, AF:0.05
CHEK2	SNV, V150M, AF:0.08
CHEK2	SNV, T43I, AF:0.07
FANCL	SNV, P225S, AF:0.05
PALB2	SNV, V978I, AF:0.06
PALB2	SNV, R975K, AF:0.06
PALB2	SNV, S950F, AF:0.05
PALB2	SNV, C802Y, AF:0.09
PALB2	SNV, D670N, AF:0.06
PALB2	SNV, G492E, AF:0.09
PALB2	SNV, V298I, AF:0.06
PALB2	SNV, S270N, AF:0.06
PALB2	SNV, G269S, AF:0.09
PALB2	SNV, P229S, AF:0.05
PALB2	SNV, P225S, AF:0.09
PALB2	SNV, D167N, AF:0.05
PALB2	SNV, R160K, AF:0.06
PALB2	SNV, S136N, AF:0.06
RAD51B	SNV, V334A, AF:0.09
RAD51C	SNV, G149E, AF:0.08
RAD51C	SNV, A309V, AF:0.06
RAD54L	SNV, R2K, AF:0.05
RAD54L	SNV, P174S, AF:0.05
RAD54L	SNV, A242T, AF:0.15
RAD54L	SNV, P405L, AF:0.07

Homologous recombination repair (HRR) genes were defined from published evidence in relevant therapies, clinical guidelines, as well as clinical trials, and include - BRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D and RAD54L.

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

Not present

CLINICAL CORRELATION AND VARIANT INTERPRETATION

PIK3CA p.His1047Arg **Coverage Frequency 543**

Gene description: The *PIK3CA* gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples one of four p110 catalytic subunits to activated tyrosine protein kinases 2,3 . The p110 catalytic subunits include p110 α , β, δ, γ and are encoded by genes PIK3CA, PIK3CB, PIK3CD and PIK3CG, respectively². PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{4,5}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism⁴⁻⁷. Recurrent somatic alterations in PIK3CA are frequent in cancer and

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Comprehensive Panel- 500 Genes

result in the activation of PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability⁸⁻¹⁰.

Alterations and prevalence: Recurrent somatic activating mutations in *PIK3CA* are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck and colorectal cancers^{11,12}. Activating mutations in *PIK3CA* commonly occur in exons 10 and 21 (previously referred to as exons 9 and 20 due to exon 1 being untranslated)^{13,14}. These mutations typically cluster in the exon 10 helical (codons E542/E545) and exon 21 kinase (codon H1047) domains, each having distinct mechanisms of activation¹⁵⁻¹⁷. *PIK3CA* resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{11,12}.

Potential relevance: The PI3K inhibitor, alpelisib¹⁸, is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer¹⁹. Additionally, a phase Ib study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)- positive breast cancer, the clinical benefit rate, defined as lack of disease progression ≥ 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors²⁰. Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations²⁰. However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations²¹. Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers^{22,23}. The FDA also approved the kinase inhibitor, capivasertib (2023)²⁴ in combination with fulvestrant for locally advanced or metastatic HR-positive, HER2-negative breast cancer with one or more PIK3CA/AKT1/PTEN-alterations following progression after endocrine treatment.

REFERENCES

- 1. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 2. Whale et al. Functional characterization of a novel somatic oncogenic mutation of PIK3CB. Signal Transduct Target Ther. 2017;2:17063. PMID: 29279775
- 3. Osaki et al. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis. 2004 Nov;9(6):667-76. PMID: 15505410
- 4. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 5. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 6. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 7. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 8. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 9. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 10. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 11. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Brito et al. PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness. Clin Med Insights Oncol. 2022;16:11795549211068804. PMID: 35023985
- 14. Huret et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013 Jan;41(Database issue):D920-4. PMID: 23161685
- 15. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 16. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 17. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/212526s009lbl.pdf
- 19. NCCN Guidelines® NCCN-Breast Cancer [Version 2.2024]
- 20. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 21. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 22. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 23. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929
- 24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/218197s000lbl.pdf

RECOMMENDATIONS

REPORT DATE BOOKING ID 10 July 2024 #012406250122

• Genetic counselling is advised for interpretation on the consequences of the variant(s).

Jatinder Kaur, PhD

atima Kaus

Head, Molecular Biology & Genomics

Dr. Gulshan Yadav, MD

Head, Pathology

APPENDIX 1: TEST METHODOLOGY

METHOD

Pathology Assessment

The FFPE block is reviewed for presence of tumor cells and tumor percentage by histopathologists through screening of H & E staining slides.

Assay Methods

The test was performed using the Oncomine Comprehensive Assay Plus targeted, amplicon based next-generation sequencing assay that analyses 500+ unique genes for SNV, CNV, TMB, MSI and fusions. The minimum of 20ng of DNA isolated by Qiagen nucleic acid isolation kit is amplified using Oncomine Comprehensive assay plus as per the instruction manual. The amplicon libraries are prepared from 4 pools of primer which includes 2 pools of DNA based targets. The amplified primer pools are enzyme fragmented and Ion adapter barcodes are added. Amplified library is purified followed by quantitation using Ion Library TaqManTM Quantitation Kit. The quality of amplified libraries having 150-200bp sizes are confirmed by Agilent TapeStation. The quantified pooled library is loaded on Ion 550 Chip using Ion Chef and sequencing is performed on the Ion GeneStudio S5 prime system. For the current report RNA was not included.

Secondary Analysis Methods

The sequence data is processed using Ion Torrent server and the Ion reporter software 5.20.2.0. TMB is reported as High (>10 mutations/Mb), Intermediate (>3 to 10 mutations/Mb) and Low (<3 mutations/Mb). All the reported alterations are manually curated using Integrative Genomics Viewer (IGV). The Final report is generated using oncomine knowledgebase which includes contextual investigations of sample-specific variants with respect to labels, guidelines (AMP, ASCO, CAP), current clinical trials and peer-reviewed literature which is frequently updated.

Genes Assayed

The panel covers 1.50M bases of DNA region, including 1.06M bases of exonic regions. It includes a total of 500+ genes covering 165 hotspot genes, 333 genes with focal CNV gains and loss, 227 genes with full coding sequence (CDS), >1 Mb exonic regions for TMB evaluation and 76 MSI markers for Microsatellite Instability (MSI) and Microsatellite stable (MSS). It also covers 46 genes (SNVs, Indels, CNVs) for homologous recombination deficiency (HRD) including *BRCA1* and *BRCA2*. A subset of these (20 genes) were assessed for determining Loss of Heterozygosity (LOH) at gene level. Details available on request.

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic, diagnostic, and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well-powered studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV : Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases.

DISCLAIMER

• This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third

Comprehensive Panel-500 Genes

parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.

- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.
- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

LIMITATIONS

- Testing has been performed assuming that the sample received belongs to the above-named individual(s) and any stated relationships between individuals are accepted as true.
- Due to inherent technology limitations, coverage is not uniform across all regions. Hence pathogenic variants present in areas of insufficient coverage may not be analyzed/reported.
- Variants with very low allele frequency (<5%) present in the given specimen or lower copy number variation might not be detected. Similarly fusion variants with less read may not be detected. Variant detection is also based on tumor percentage and affected by tumor heterogeneity. The FFPE fixation issues and the age of the block also widely affects the genomic findings.

PATIENT Asha Gehlot REPORT DATE 10 July 2024

BOOKING ID #012406250122

Comprehensive Panel-500 Genes

- The classification and interpretation of all the variants in this assay reflects the current state of scientific understanding at the time this report was issued. In some instances, the classification and interpretation of such variants may change as new scientific information comes to light.
- Test results should be interpreted in context of clinical findings, tumor sampling, histopathology, and other laboratory data.
- If results obtained do not match other clinical laboratory findings, please contact the laboratory for possible. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- Genetic testing is highly accurate. Rarely, inaccurate results may occur for various reasons. These reasons include, but are not limited to mislabelled samples, inaccurate reporting of clinical/medical information, rare technical errors or unusual circumstances such as bone marrow transplantation, blood transfusion; or the presence of change(s) in such a small percentage of cells that may not be detectable by the test (mosaicism).

APPENDIX 2: GENE LIST

HOTSPOT GENES

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABL1	ABL2	ACVR1	AKT1	AKT2	AKT3	ALK
AR	ARAF	ATP1A1	AURKA	AURKC	AXL	BCL2
BCL2L12	BCL6	BCR	BMP5	BRAF	BTK	CACNA1D
CARD11	CBL	CCND1	CCND2	CCND3	CCNE1	CD79B
CDK4	CDK6	CHD4	CSF1R	CTNNB1	CUL1	CYSLTR2
DDR2	DGCR8	DROSHA	E2F1	EGFR	EIF1AX	EPAS1
ERBB2	ERBB3	ERBB4	ESR1	EZH2	FAM135B	FGF7
FGFR1	FGFR2	FGFR3	FGFR4	FLT3	FLT4	FOXA1
FOXL2	FOXO1	GATA2	GLI1	GNA11	GNAQ	GNAS
H2BC5	Н3-ЗА	Н3-3В	H3C2	HIF1A	HRAS	IDH1
IDH2	IKBKB	IL6ST	IL7R	IRF4	IRS4	KDR
KIT	KLF4	KLF5	KNSTRN	KRAS	MAGOH	MAP2K1
MAP2K2	MAPK1	MAX	MDM4	MECOM	MED12	MEF2B
MET	MITF	MPL	MTOR	MYC	MYCN	MYD88
MYOD1	NFE2L2	NRAS	NSD2	NT5C2	NTRK1	NTRK2
NTRK3	NUP93	PAX5	PCBP1	PDGFRA	PDGFRB	PIK3C2B
PIK3CA	РІКЗСВ	PIK3CD	PIK3CG	PIK3R2	PIM1	PLCG1
PPP2R1A	PPP6C	PRKACA	PTPN11	PTPRD	PXDNL	RAC1
RAF1	RARA	RET	RGS7	RHEB	RHOA	RICTOR
RIT1	ROS1	RPL10	SETBP1	SF3B1	SIX1	SIX2
SLCO1B3	SMC1A	SMO	SNCAIP	SOS1	SOX2	SPOP
SRC	SRSF2	STAT3	STAT5B	STAT6	TAF1	TERT
TGFBR1	TOP1	TPMT	TRRAP	TSHR	U2AF1	USP8
WAS	XPO1	ZNF217	ZNF429			

CNVs GAIN

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ADAMTS12	ADAMTS2	BMPR2	CSMD3	DOCK3	ADAMTS12	ADAMTS2
ERAP1	ERAP2	HLA-A	PDIA3	PMS1	ERAP1	ERAP2
RECQL4	TAP1	TAP2	TP63	TPP2		

CNVs AND HOTSPOT

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABL1	ABL2	AKT1	AKT2	AKT3	ALK	AR
ARAF	AURKA	AURKC	AXL	BCL2	BCL2L12	BCL6
BRAF	CARD11	CBL	CCND1	CCND2	CCND3	CCNE1
CDK4	CDK6	CHD4	DDR2	EGFR	EIF1AX	ERBB2
ERBB3	ERBB4	ESR1	EZH2	FAM135B	FGFR1	FGFR2
FGFR3	FGFR4	FLT3	FLT4	FOXA1	GATA2	GNAS
H3-3A	Н3-3В	IDH2	IKBKB	IL7R	KDR	KIT

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Comprehensive Panel- 500 Genes

KLF5	KRAS	MAGOH	MAP2K1	MAPK1	MAX	MDM4
MECOM	MEF2B	MET	MITF	MPL	MTOR	MYC
MYCN	MYD88	NFE2L2	NRAS	NTRK1	NTRK3	PCBP1
PDGFRA	PDGFRB	PIK3C2B	PIK3CA	PIK3CB	PIK3R2	PIM1
PLCG1	PPP2R1A	PPP6C	PRKACA	PTPN11	PXDNL	RAC1
RAF1	RARA	RET	RHEB	RICTOR	RIT1	ROS1
SETBP1	SF3B1	SLCO1B3	SMC1A	SMO	SPOP	SRC
STAT3	STAT6	TERT	TOP1	TPMT	U2AF1	USP8
XPO1	ZNF217	ZNF429				

GENE FUSION (Inter and Intra genetic)

Gene	Gene	Gene	Gene	Gene	Gene	Gene
AKT1	AKT2	AKT3	ALK	AR	BRAF	BRCA1
CDKN2A	EGFR	ERBB2	ERBB4	ERG	ESR1	ETV1
ETV4	ETV5	FGFR1	FGFR2	FGFR3	MAP3K8	MET
MTAP	MYB	MYBL1	NOTCH1	NOTCH2	<i>NOTCH3</i>	NRG1
NTRK1	NTRK2	NTRK3	NUTM1	PIK3CA	PIK3CB	PPARG
PRKACA	PRKACB	RAF1	RARA	RELA	RET	ROS1
RSP02	RSP03	STAT6	TERT	TFE3	TFEB	YAP1

CNV LOSS AND CDS

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABRAXAS1	ACVR1B	ACVR2A	ADAMTS12	ADAMTS2	AMER1	APC
ARHGAP35	ARID1A	ARID1B	ARID2	ARID5B	ASXL1	ASXL2
ATM	ATR	ATRX	AXIN1	AXIN2	B2M	BAP1
BARD1	BCOR	BLM	BMPR2	BRCA1	BRCA2	BRIP1
CASP8	CBFB	CD274	CD276	CDC73	CDH1	CDH10
CDK12	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CHEK1
СНЕК2	CIC	CREBBP	CSMD3	CTCF	CTLA4	CUL3
CUL4A	CUL4B	CYLD	CYP2C9	DAXX	DDX3X	DICER1
DNMT3A	DOCK3	DPYD	DSC1	DSC3	ELF3	ENO1
EP300	EPCAM	EPHA2	ERAP1	ERAP2	ERCC2	ERCC4
ERRFI1	ETV6	FANCA	FANCC	FANCD2	FANCE	FANCF
FANCG	FANCI	FANCL	FANCM	FAT1	FBXW7	FUBP1
GATA3	GNA13	GPS2	HDAC2	HDAC9	HLA-A	HLAB
HNF1A	INPP4B	JAK1	JAK2	JAK3	KDM5C	KDM6A
KEAP1	KMT2A	KMT2B	KMT2C	KMT2D	LARP4B	LATS1
LATS2	MAP2K4	MAP2K7	MAP3K1	MAP3K4	MAPK8	MEN1
MGA	MLH1	MLH3	MRE11	MSH2	MSH3	MSH6
MTAP	MUTYH	NBN	NCOR1	NF1	NF2	NOTCH1
NOTCH2	<i>NOTCH3</i>	NOTCH4	PALB2	PARP1	PARP2	PARP3
PARP4	PBRM1	PDCD1	PDCD1LG2	PDIA3	PGD	PHF6
PIK3R1	PMS1	PMS2	POLD1	POLE	POT1	PPM1D
PPP2R2A	PRDM1	PRDM9	PRKAR1A	PTCH1	PTEN	PTPRT
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L
RASA1	RASA2	RB1	RBM10	RECQL4	RNASEH2A	RNASEH2B

MOLO Comprehensive Panel- 500 Genes

RNF43	RPA1	RUNX1	SDHA	SDHB	SDHD	SETD2
SLX4	SMAD2	SMAD4	SMARCA4	SMARCB1	SOX9	SPEN
STAG2	STK11	SUFU	TAP1	TAP2	TBX3	TCF7L2
TET2	TGFBR2	TNFAIP3	TNFRSF14	TP53	TP63	TPP2
TSC1	TSC2	USP9X	VHL	WT1	XRCC2	XRCC3
ZFHX3	ZMYM3	ZRSR2				

CDS ONLY

Gene	Gene	Gene	Gene	Gene	Gene	Gene
CALR	CIITA	CYP2D6	ERCC5	FAS	ID3	KLHL13
MTUS2	PSMB10	PSMB8	PSMB9	RNASEH2C	RPL22	RPL5
RUNX1T1	SDHC	SOCS1	STAT1	TMEM132D	UGT1A1	ZBTB20

TMB ONLY

Gene	Gene	Gene	Gene	Gene	Gene	Gene
44.CF	A CCL (O.D.	10.11440	43104	ADMOA	AHDIZD	DDINIDO
A1CF	ACSM2B	ADAM18	ANO4	ARMC4	AURKB	BRINP3
C6	C8A	C8B	CANX	CASR	CD163	CNTN6
CNTNAP4	CNTNAP5	COL11A1	DCAF4L2	DCDC1	GALNT17	GPR158
GRID2	H1-4	HCN1	HLA-C	KCND2	KCNH7	KCNJ5
KEL	KIR3DL1	KRTAP21-1	KRTAP6-2	LRRC7	MARCO	NLRC5
NOL4	NRXN1	NYAP2	OR10G8	OR2G6	OR2L13	OR2L2
OR2L8	OR2M3	OR2T3	OR2T33	OR2T4	OR2W3	OR4A15
OR4C15	OR4C6	OR4M1	OR4M2	OR5D18	OR5F1	OR5L1
OR5L2	OR6F1	OR8H2	OR8I2	OR8U1	ORC4	PAK5
PCDH17	PDE1A	PDE1C	PLXDC2	POM121L12	PPFIA2	RBP3
REG1A	REG1B	REG3A	REG3G	RPTN	RUNDC3B	SH3RF2
SLC15A2	SLC8A1	SYT10	SYT16	TAPBP	TOP2A	TPTE
TRHDE	TRIM48	TRIM51	ZIM3	ZNF479	ZNF536	