

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

Disease: Metastatic Lung adenocarcinoma

Test Description

Precision panel is a comprehensive cancer genomic NGS assay to accurately and rapidly identify key actionable biomarkers and provide precision treatment options including Chemotherapy, Targeted Therapy and Immunotherapy. This assay screens both exonic and selected intronic regions of >1000 genes with known genomic alterations with high coverage depth. The assay can detect all classes of genomic alterations, including SNVs, small Indels, CNVs and selected translocations. In addition, TMB, MSI and HRD are analyzed to help guide immunotherapy decisions.

Patient Demographic

Name: Mr. Lee Kien On Yee

Sex: Male

Date of Birth/Age: 64 years

Clinician

Clinician Name: Dr Amit Verma

Medical Facility: Dr AV Institute of Personalized Cancer

Therapy and Research Pathologist: Not Provided

Specimen

Booking ID: 012405280256

Sample Type: FFPE Block No. H/5865/23 B Specimen Site: Left lung lesion biopsy Tumor Content Percentage: NA Date of Collection: 28-05-2024

 $\textbf{Date of Booking} \hbox{:}\ 28\text{-}05\text{-}2024$

CLINICAL SYNOPSIS

Lee Kien On Yee, is a known case of metastatic lung adenocarcinoma. He has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULT SUMMARY

Potential clinically significant alteration.

Tier I alterations in EGFR (p.Leu858Arg and Amplification) and TP53 (p.Ser90Valfs*55) genes were observed.

EGFR alterations are found to activate multiple downstream signaling pathways such as PI3K/AKT/MTOR and RAS/RAF/MAPK pathways that lead to cancer cell proliferation and cell cycle progression. Moreover, studies have confirmed EGFR amplification as an independent resistance mechanism to EGFR TKIs.

TP53 gene mutations are associated with an unfavorable prognosis, increased likelihood of metastatic progression and suboptimal response to chemotherapy. The loss of function mutation in TP53 may exacerbate the aggressive nature of this tumor.

Moreover, studies have indicated TP53 mutations as an unfavorable prognostic factor in patients receiving first-, second- and third-generation EGFR-TKI therapy with EGFR mutant advanced NSCLC. Thus, with concomitant concurrence of EGFR and TP53 mutations, the duration of PFS has been reported to be significantly longer with EGFR-TKI treatment combined with antiangiogenic drugs or chemotherapy than with EGFR-TKIs only.

Other Markers

Immunotherapy markers: **TMB** is high and MSI is low, while PD-L1 is positive on tissue (TPS is 20%). The overall **HRD** score is intermediate.

High TMB correlates with genomic instability and immunotherapy response. Intermediate HRD score indicates aberration of the HRR pathway and may show potential response to PARP inhibitors.

RESULTS

Potential clinically significant alterations were observed in EGFR and TP53 genes.

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

Gene (Transcript ID)	Variant	Allele Frequency	Exon	Mutation Effect	Variant Effect	Tier
EGFR (NM_005228.5)	c.2573T>G p.Leu858Arg	81%	21	Gain of Function	Missense	Ia
EGFR (NM_005228.5)	Amplification	-	-	Gain-of-function	CNV	Ia
TP53 (NM_000546.6)	c.267_277del p.Ser90Valfs*55	20%	4	Unknown	Frameshift	Ib

As per guidelines of the ACMG/AMP/ASCO/CAP

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

None

IMMUNO-ONCOLOGY FINDINGS

MSI/MMR Status	TMB	PDL-1
NGS Based	(Tissue / Blood)	IHC on tissue (TBx), Dako clone 22C3 or CTC (LBx)
1.5% Low	15.6 Muts/Mb High	PD-L1 Positive on Tissue (TPS 20%)

HOMOLOGOUS RECOMBINANT DEFICIENCY (HRD) FINDINGS

Overall HRD Scoring	HRR Gene	LOH (Loss of Heterozygosity)	TAI & LST (Telomeric Allelic Instability & Large State Transitions)
42%	None	12%	TAI: 26%
Intermediate		Low	LST: 04%

Note: LOH score is calculated based on the genome wide LOH markers present in gene panel.

OTHER BIOMARKERS

Gene	Findings	Gene	Findings
EGFR	Amplification	NTRK	None detected
ALK	None detected	RET	None detected
ERBB2	None detected	ROS1	None detected
KRAS	None detected		
MET	None detected		

LONGITUDINAL MONITORING MARKERS

Circulating Tumor Cells (CTC)	CTC Cluster	Highest Mutant Allele Frequency	Tumor DNA Fraction (%)
NA	NA	<i>TP53</i> : p.Ser90Valfs*55 (VAF: 20%)	29

Note: EDTA blood sample for CTS is not provided.

AI-powered probabilistic model is used to calculate the tumor fraction, enabling the simultaneous segmentation of the genome and accurate prediction of large-scale copy number variations. The model takes into consideration variations in clonality and copy number at each locus, ensuring a comprehensive analysis.

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

CLINICAL CORRELATION AND VARIANT INTERPRETATION

EGFR p.Leu858Arg and Amplification

Gene description: EGFR (HER1), epidermal growth factor receptor, is a tyrosine kinase receptor, which activates RAS/RAF/MEK and PI3K/AKT/Mtor pathways, leading to increased cell proliferation and growth (Domvri K, Zarogoulidis P, et al. 2013). EGFR activating mutations, amplification, and overexpression are found in a variety of tumors, including non-small cell lung cancer (Midha A, Dearden S, McCormack R., et al. 2015, Ruiz-Patiño A, Castro CD., et al. 2018) and colorectal cancer (Ben Brahim E, Ayari I., et al. 2018). According to AACR Genie cases, *EGFR* is altered in 26.09% of lung adenocarcinoma patients with *EGFR* Mutation present in 25.24% of all lung adenocarcinoma patients.

Variant description: EGFR activating mutations, amplification, and overexpression are found in a variety of tumors, including non-small cell lung cancer (Midha A, Dearden S, McCormack R., et al. 2015; Ruiz-Patiño, Alejandro et al. 2018). About 15% of Caucasian and close to 50% of Asian individuals with advanced NSCLC had somatic, activating mutations in the EGFR tyrosine kinase domain. Exon 19 deletions or exon 21 L858R point mutations make up around 90% of these alterations. These genetic alterations function as oncogenic drivers that activate EGFR downstream signaling without the need for ligands, boosting cell proliferation, survival, and migration. Thus, since EGFR mutations are found to activate PI3K/PDK1/AKT as well as RAS/RAF/MAPK pathways and therefore, suggestive of potential therapeutic benefit from EGFR inhibitors.

Potential relevance: EGFR TKIs such as Osimertinib, Afatinib, Dacomitinib, Erlotinib and Gefitinib have been approved as therapy options for patients with non-small-cell lung cancer (NSCLC) who have tumors that contain EGFR exon 19 deletions or exon 21 (L858R) mutations. EGFR TKIs such as Osimertinib, Afatinib, Dacomitinib, Erlotinib and Gefitinib have been approved as therapy options for patients with non-small-cell lung cancer (NSCLC) who have tumors that contain EGFR exon 19 deletions or exon 21 (L858R) mutations. However, studies have shown that the presence EGFR amplification/overexpression are associated with cancer aggressiveness (Lu, Zhimin, et al.2001; Citri, Ami, and Yosef Yarden., et al.2006) and unfavorable factor when patients are treated with EGFR TKIs (Cheng, Ying, et al.2020; Yang, Hainan, et al. 2022).

TP53 p.Ser90Valfs*55

Gene description: TP53, tumor protein p53, is a tumor suppressor (Wang, Li-Hui et al. 2018) and oncogene (Yamamoto, Satomi, and Tomoo Iwakuma.2018) involved in cell cycle arrest and apoptosis, and is the most frequently mutated gene in cancer (Oren, M, and V Rotter.1999; Freed-Pastor, William A, and Carol Prives.2012). Somatic missense mutations are frequent in almost all cancer types (Giacomelli, Andrew 0 et al. 2018) and are also implicated in chemoresistance (Blandino, G et al.1999; Brachova, Pavla et al. 2013; Ferraiuolo, Maria et al. 2016).

Variant description: TP53 p.S90Vfs*55 indicates a shift in the reading frame starting at amino acid 90 and terminating 55 residues downstream causing a premature truncation of TP53 protein.

Potential relevance: According to AACR GENIE studies, *TP53* is altered in 39.52% of all cancers with lung adenocarcinoma, colon adenocarcinoma, breast invasive ductal carcinoma, pancreatic adenocarcinoma and high grade ovarian serous adenocarcinoma having the greatest prevalence of alterations. Moreover, it is reported that in general *TP53* alterations are associated with a worse prognosis and relatively more resistance to chemotherapy and radiation.

DESCRIPTION OF PERTINENT BIOMARKERS

Tumor mutational burden (TMB) is defined as the number of somatic mutations per megabase of the coding region in the genome. TMB is a clinical biomarker associated with response to immune checkpoint inhibitors in various cancers, including NSCLC, bladder cancer, and melanoma (Rizvi, Naiyer A., et al. 2015; Carbone, David P et al. 2017; Hellmann, Matthew D et al. 2018; Kowanetz, Marcin, et al. 2017; Rizvi, Hira et al. 2018). High tumor mutational burden (TMB-H) is defined by >10 mutations/megabase [mut/Mb] can be seen frequently in cancers linked to mutagens, such as exposure to ultraviolet light in melanoma and smoking in non-small- cell lung cancer. Other tumor forms, such as mesothelioma, sarcomas and prostate cancers have been reported to have a TMB-H prevalence of less than 5% (Shao C, Li G, Huang L, et al. 2020). TMB is also affected by mutations in the proofreading domains of DNA polymerases encoded by the *POLE* and *POLD1* genes and microsatellite

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

instability (MSI). (Cancer Genome Atlas Research Network et al. 2013; Briggs, Sarah and Ian Tomlinson.2013; Heitzer, Ellen and Ian Tomlinson.2014; Cancer Genome Atlas Network.2012; Roberts, Steven A. and Dmitry A. Gordenin. 2014).

Pembrolizumab is a monoclonal antibody that binds to the PD-1 receptor and disrupts its interaction with PD-L1 and PD-L2, resulting in PD-1 pathway-mediated immune response suppression, including antitumor immunity. Antibodies to PD-1 or its ligands have been used to block this pathway in patients with a variety of cancers, including melanomas, non-small-cell lung cancer, renal cell carcinoma, bladder cancer and Hodgkin lymphoma. (Marcus, Leigh et al. 2019). The FDA approved for the treatment of adult and pediatric patients with unresectable or metastatic tumor mutational burden-high solid tumors and for patients with unresectable or metastatic, MSI-H/dMMR solid tumors with progression on prior treatment with no satisfactory alternative treatment options. FDA granted the approval based on a clinically important overall response rate (29%; 95% confidence interval, 21-39) and duration of response (57% of responses lasting \geq 12 months) in the subset of patients with TMB-H solid tumors (n = 102) spanning nine different tumor types enrolled in a multicenter single-arm trial (KEYNOTE- 158, Marcus, Leigh et al. 2021).

Genomic instability is one of the most common primary aspects of tumorigenesis and defective DNA repair. Homologous recombination deficiency (HRD) is a phenotype that is characterized by the inability of a cell to effectively repair DNA double-strand breaks using the homologous recombination repair (HRR) pathway. Loss-of-function genes involved in this pathway can sensitize tumors to PARP inhibitors and platinum-based chemotherapy, which target the destruction of cancer cells by working in concert with HRD through synthetic lethality.

The loss of heterozygosity (LOH) score is a profile of the percentage of the tumor genome that is under focal loss of one allele (Swisher, Elizabeth M et al. 2017); focal LOH events accumulate as genomic "scars" as a result of incorrect DNA double-strand break repair when the homologous recombination pathway is deficient (HRD) (Wang, Zhigang C et al. 2012; Abkevich, V et al. 2012; Watkins, Johnathan A et al. 2014; Vanderstichele, Adriaan et al. 2017). HRD and consequent genomic LOH occur because of genetic or epigenetic inactivation of one or more of the homologous recombination pathway proteins, including BRCA1, BRCA2, RAD51C, ATM, PALB2 and BRIP1 (Watkins, Johnathan A et al. 2014; Vanderstichele, Adriaan et al. 2017; Cancer Genome Atlas Research Network. 2011; Venkitaraman, Ashok R. 2003).

Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role (Mekonnen, Negesse et al. 2022). Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a novel class of anti-cancer therapies that compete with NAD+ for the catalytically active site of PARP molecules. PARPi has been shown to be effective in the treatment of homologous recombination repair (HR) deficient tumors (Rose, Maddison et al.2020). The use of PARPIs in non-BRCA mutation carrier patients can be expanded to sporadic cancers that display "BRCAness" (cancers that have defective HR without germline *BRCA1* and *2* mutations) (Mekonnen, Negesse et al.2022). HRD-positive tumors are being evaluated for clinical efficacy in different solid tumors including lung cancers.

REFERENCES

- 1. Abkevich, V et al. "Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer." British journal of cancer vol. 107,10 (2012): 1776-82. doi:10.1038/bjc.2012.451
- 2. Ben Brahim, Ehsen et al. "Expression of epidermal growth factor receptor (EGFR) in colorectal cancer: An immunohistochemical study." Arab journal of gastroenterology: the official publication of the Pan-Arab Association of Gastroenterology vol. 19,3 (2018): 121 124 doi: 10.1016 / j.ajg. 2018.08.002
- 3. Blandino, G et al. "Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy." Oncogene vol. 18,2 (1999): 477-85. doi:10.1038/sj.onc.1202314
- 4. Brachova, Pavla et al. "The consequence of oncomorphic TP53 mutations in ovarian cancer." International journal of molecular sciences vol. 14,9 19257-75. 23 Sep. 2013, doi:10.3390/ijms140919257
- 5. Briggs, Sarah, and Ian Tomlinson. "Germline and somatic polymerase ϵ and δ mutations define a new class of hypermutated colorectal and endometrial cancers." The Journal of pathology vol. 230,2 (2013): 148-53. doi:10.1002/path.4185
- 6. Cancer Genome Atlas Network. "Comprehensive molecular characterization of human colon and rectal cancer." Nature vol. 487,7407 330-7. 18 Jul. 2012, doi:10.1038/nature11252
- 7. Cancer Genome Atlas Research Network et al. "Integrated genomic characterization of endometrial carcinoma." Nature vol. 497,7447 (2013): 67-73. doi:10.1038/nature12113
- 8. Cancer Genome Atlas Research Network. "Integrated genomic analyses of ovarian carcinoma." Nature vol. 474,7353 609-15. 29 Jun. 2011, doi:10.1038/nature10166
- 9. Carbone, David P et al. "First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer." The New England journal of medicine vol. 376,25 (2017): 2415-2426. doi:10.1056/NEJMoa1613493

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

- 10. Domvri K, Zarogoulidis P, Darwiche K, Browning RF, Li Q, Turner JF, Kioumis I, Spyratos D, Porpodis K, Papaiwannou A, Tsiouda T, Freitag L, Zarogoulidis K. Molecular Targeted Drugs and Biomarkers in NSCLC, the Evolving Role of Individualized Therapy. J Cancer. 2013 Nov 23; 4(9):736-54. doi: 10.7150/jca.7734
- 11. Ferraiuolo, Maria et al. "Oncogenic Intra-p53 Family Member Interactions in Human Cancers." Frontiers in oncology vol. 6 77. 31 Mar. 2016, doi:10.3389/fonc.2016.00077
- 12. Freed-Pastor, William A, and Carol Prives. "Mutant p53: one name, many proteins." Genes & development vol. 26,12 (2012): 1268-86. doi:10.1101/gad.190678.112
- 13. Giacomelli, Andrew O et al. "Mutational processes shape the landscape of TP53 mutations in human cancer." Nature genetics vol. 50,10 (2018): 1381-1387. doi:10.1038/s41588-018-0204-y
- 14. Hallberg, B, and R H Palmer. "The role of the ALK receptor in cancer biology." Annals of oncology: official journal of the European Society for Medical Oncology vol. 27 Suppl 3 (2016): iii4-iii15. doi:10.1093/annonc/mdw3
- 15. Heitzer, Ellen, and Ian Tomlinson. "Replicative DNA polymerase mutations in cancer." Current opinion in genetics & development vol. 24,100 (2014): 107-13. doi:10.1016/j.gde.2013.12.005
- 16. Hellmann, Matthew D et al. "Tumor Mutational Burden and Efficacy of Nivolumab Monotherapy and in Combination with Ipilimumab in Small-Cell Lung Cancer." Cancer cell vol. 33,5 (2018): 853-861.e4. doi:10.1016/j.ccell.2018.04.001
- 17. Kowanetz, Marcin, et al. "OA20. 01 tumor mutation burden (TMB) is associated with improved efficacy of atezolizumab in 1L and 2L+ NSCLC patients." Journal 1914-1918. 25 Aug. 2017, doi:10.1039/c7md00305f
- 18. Lu, Yiyu et al. "Case report: EGFR-mutant lung adenocarcinoma with the TP53 and RB1 mutations showed resistance to TKI therapy." Annals of palliative medicine vol.10,12 (2021): 12886-12893. doi:10.21037/apm-21-2016
- 19. Marcus, Leigh, et al. "FDA approval summary: pembrolizumab for the treatment of tumor mutational burden-high solid tumors." Clinical Cancer Research 27.17 (2021): 4685-4689.
- 20. Marcus, Leigh, et al. "FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors." Clinical Cancer Research 25.13 (2019): 3753 3758.
- 21. Mekonnen, Negesse et al. "Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors." Frontiers in oncology vol. 12 880643. 17 Jun. 2022, doi:10.3389/fonc.2022.880643
- 22. Midha, Anita et al. "EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII)." American journal of cancer research vol. 5,9 2892-911. 15 Aug. 2015
- 23. Mologni, Luca et al. "NPM/ALK mutants resistant to ASP3026 display variable sensitivity to alternative ALK inhibitors but succumb to the novel compound PF-06463922." Oncotarget vol. 6,8 (2015): 5720-34. doi:10.18632/oncotarget.3122
- 24. Oren, M, and V Rotter. "Introduction: p53--the first twenty years." Cellular and molecular life sciences: CMLS vol. 55,1 (1999): 9-11. doi:10.1007/s000180050265
- 25. Rizvi, Hira et al. "Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients with Non-Small-Cell Lung Cancer Profiled with Targeted Next-Generation Sequencing." Journal of clinical oncology: official journal of the American Society of Clinical Oncology vol. 36,7 (2018): 633-641. doi:10.1200/JC0.2017.75.3384
- 26. Rizvi, Naiyer A et al. "Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer." Science (New York, N.Y.) vol. 348,6230 (2015): 124-8. doi:10.1126/science.aaa1348
- 27. Roberts, Steven A, and Dmitry A Gordenin. "Hypermutation in human cancer genomes: footprints and mechanisms." Nature reviews. Cancer vol. 14,12 (2014):786-800. doi:10.1038/nrc3816
- 28. Rose, Maddison et al. "PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance." Frontiers in cell and developmental biology vol. 8 564601. 9 Sep. 2020, doi:10.3389/fcell.2020.564601
- Ruiz-Patiño, Alejandro et al. "EGFR Amplification and Sensitizing Mutations Correlate with Survival in Lung Adenocarcinoma Patients Treated with Erlotinib (MutP-CLICaP)." Targeted oncology vol. 13,5 (2018): 621-629. doi:10.1007/s11523-018-0594-x
- Shao, Changxia et al. "Prevalence of High Tumor Mutational Burden and Association with Survival in Patients With Less Common Solid Tumors." JAMA network open vol. 3,10 e2025109. 1 Oct. 2020, doi:10.1001/jamanetworkopen.2020.25109
- 31. Shu, Catherine A., et al. "Amivantamab and lazertinib in patients with EGFR-mutant non-small cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2." (2022): 9006-9006.
- 32. Swisher, Elizabeth M et al. "Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial." The Lancet. Oncology vol. 18,1 (2017): 75-87. doi:10.1016/S1470-2045(16)30559-9
- 33. Vanderstichele, Adriaan et al. "Genomic signatures as predictive biomarkers of homologous recombination deficiency in ovarian cancer." European journal of cancer (Oxford, England: 1990) vol. 86 (2017): 5-14. doi:10.1016/j.ejca.2017.08.029
- 34. Venkitaraman, Ashok R. "A growing network of cancer-susceptibility genes." The New England journal of medicine vol. 348,19 (2003): 1917-9. doi:10.1056/NEJMcibr023150
- 35. Wang, Li-Hui et al. "Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview." Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology vol. 51,6 (2018): 2647-2693. doi:10.1159/000495956
- 36. Wang, Zhigang C et al. "Profiles of genomic instability in high-grade serous ovarian cancer predict treatment outcome." Clinical cancer research: an official journal of the American Association for Cancer Research vol. 18,20 (2012): 5806-15. doi:10.1158/1078-0432.CCR-12-0857
- 37. Watkins, Johnathan A et al. "Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers." Breast cancer research: BCR vol. 16,3 211. 3 Jun. 2014, doi:10.1186/bcr3670
- 38. Yamamoto, Satomi, and Tomoo Iwakuma. "Regulators of Oncogenic Mutant TP53 Gain of Function." Cancers vol. 11,1 4. 20 Dec. 2018, doi:10.3390/cancers11010004

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

RECOMMENDATIONS

- A follow-up liquid biopsy after 3 months may be recommended to explore markers for immunotherapy.
- Validation of the variant(s) by Sanger sequencing is recommended to rule out false positives.
- Genetic counselling is advised for interpretation on the consequences of the variant(s).
- If results obtained do not match the clinical findings, additional testing should be considered as per referring clinician's recommendations.

Jatinder Kaur, PhD

Head, Molecular Biology & Genomics

Dr. Gulshan Yadav, MD Head, Pathology

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

APPENDIX 1: TEST METHODOLOGY

Test Description & Methodology

Nucleic acids were isolated from samples and after quality check was directly loaded on Next Generation Sequencer and subjected to automated library preparation and template preparation followed by sequencing.

Analysis is done and the data is visualized on Integrative Genomics Viewer (IGV) and analyzed. The final report is generated using curated knowledgebase reporter. The assay has been optimized to enable rapid and accurate detection of true somatic alterations by effective sequencing of both tissue and ctDNA based blood samples with high sensitivity and specificity for supporting reliable treatment decisions. The assay can detect all classes of genomic alterations, including Single Nucleotide Variants (SNVs), Small Insertions and Deletions (Indels), Copy Number Alterations (Amplifications) and selected translocations with minimal amounts of routine clinical samples (including core or fine-needle biopsies). In addition, all samples are simultaneously profiled for Tumor Mutation Burden (TMB), Microsatellite Instability (MSI) status and Homologous Recombination Deficiency (HRD) to help guide immunotherapy decisions. MSI status is reported as MSI-High, MSI-Intermediate or MSI-Stable (MSS). TMB status is reported for all cancer types as TMB-High (≥10 Muts/Mb), or TMB-Low (<10 Muts/Mb).

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic, diagnostic, and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well-powered studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV : Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases.

DISCLAIMER

- This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.
- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including witFhout limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene

 PATIENT
 REPORT DATE
 BOOKING ID

 Lee K. O. Yee
 04 July 2024
 #012405280256

variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.

- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

REPORT DATE 04 July 2024 BOOKING ID #012405280256

Precision Panel- 1000 Genes

APPENDIX 2: GENE LIST WITH COVERAGE

	DNA Hotspots									
ABCB1	CARD11	CYP19A1	FANCA	H2BC12	IRS2	MIB1	PAX3	QKI	SHQ1	TNFAIP3
ABL1	CARM1	CYP2D6	FANCB	H2BC17	IRS4	MIDEAS	PAX5	RAB35	SIN3A	TNFRSF11A
ABL2	CASP8	CYSLTR2	FANCC	H2BC4	ITGAM	MIR142	PAX7	RABEP1	SIRPA	TNFRSF14
ABRAXAS1	CBFA2T3	DACH1	FANCD2	H2BC5	ITK	MITF	PAX8	RAC1	SLC26A3	TNFRSF17
ACTA2	CBFB	DAXX	FANCE	H3-3A	ITPKB	MKI67	PAXIP1	RAC2	SLC34A2	TNFRSF18
АСТВ	CBL	DAZAP1	FANCF	Н3-3В	JAK1	MKNK1	PBRM1	RAD21	SLFN11	TNFRSF4
ACVR1	CBLB	DCSTAMP	FANCG	Н3-4	JAK2	MLH1	PC	RAD50	SLIT2	TNFRSF9
ACVR1B	CBLC	DCUN1D1	FANCI	Н3-5	JAK3	MLH3	PCBP1	RAD51	SLX4	TOP1
ACVR2A	CBWD3	DDB2	FANCL	НЗС1	JARID2	MLLT1	PCLO	RAD51B	SMAD2	TOP2A
ADGRA2	CCDC6	DDR1	FANCM	H3C10	JAZF1	MLLT10	PDCD1	RAD51C	SMAD3	TP53
ADGRB1	CCL2	DDR2	FAS	H3C11	JUN	MLLT3	PDCD11	RAD51D	SMAD4	TP53BP1
AGO1	CCN6	DDX3X	FASLG	H3C12	KANSL1	MPL	PDCD1LG2	RAD52	SMARCA1	TP63
AGO2	CCNB3	DDX41	FAT1	Н3С13	KAT6A	MR1	PDGFB	<i>RAD54B</i>	SMARCA2	TPMT
AJUBA	CCND1	DEK	FBXO11	H3C14	KAT6B	MRE11	PDGFRA	RAD54L	SMARCA4	TPTE2
AKT1	CCND2	DHX9	FBXO31	H3C15	KBTBD4	MRTFA	PDGFRB	RAF1	SMARCAL1	TRAF2
AKT2	CCND3	DIAPH2	FBXW7	H3C2	KDM2B	MRTFB	PDK1	RANBP17	SMARCB1	TRAF3
AKT3	CCNE1	DICER1	FCGR2A	Н3С3	KDM4C	MSH2	PDPK1	RANBP2	SMARCD1	TRAF5
ALB	CCR2	DIS3	FCGR3A	Н3С4	KDM5A	MSH3	PDS5B	RARA	SMARCE1	TRAF7
ALK	CCR4	DIS3L2	FGF1	Н3С6	KDM5C	MSH6	PGBD5	RASA1	SMC1A	TRIP13
<i>ALOX12B</i>	CCR5	DKC1	FGF10	Н3С7	KDM6A	MSI2	PGR	RASGEF1A	<i>SMC3</i>	TRPA1
AMER1	ССТ6В	DKK4	FGF12	Н3С8	KDM6B	MSMB	PHF6	RB1	SMO	TSC1
ANKRD11	CD19	DMD	FGF14	HAVCR2	KDR	MST1	РНОХ2В	RBM10	SMYD3	TSC2
ANKRD26	CD22	DNAJB1	FGF19	HDAC1	KEAP1	MST1R	PICALM	RBM15	SNCAIP	TSHR
APC	CD27	DNM2	FGF2	HDAC2	KEL	MT1JP	PIGA	RBM38	SOCS1	TSLP
APH1A	CD274	DNMT1	FGF23	HDAC4	KIF1A	MTAP	PIK3C2B	RECQL	SOCS2	TUSC3
APLNR	CD276	DNMT3A	FGF3	HDAC7	KIF1B	MTOR	PIK3C2G	RECQL4	SOCS3	TXNIP
АРОВ	CD28	DNMT3B	FGF4	HDAC9	KIF5B	MUC17	РІКЗСЗ	REL	SOS1	TYK2
AR	CD33	DOCK8	FGF5	HGF	KIR3DL1	МИС6	PIK3CA	RELA	SOX10	TYRO3
ARAF	CD36	DOT1L	FGF6	HIF1A	KIT	MUSK	РІКЗСВ	RELN	SOX17	U2AF1
ARFRP1	CD40	DROSHA	FGF7	HLA-A	KLF2	MUTYH	PIK3CD	REST	SOX2	U2AF2
ARHGAP26	CD58	DTX1	FGF8	HLA-B	KLF3	МҮВ	PIK3CG	RET	SOX9	UBE2T
ARHGAP35	CD70	DUSP2	FGF9	HLA-C	KLF4	MYBL1	PIK3R1	RFC1	SP140	UBR5
ARHGEF10	CD74	DUSP22	FGFR1	HLA-DMA	KLF5	МҮС	PIK3R2	RGPD3	SPEN	UNCX
ARHGEF12	CD79A	DUSP4	FGFR2	HLA-DMB	KLHL6	MYCL	PIK3R3	RHEB	SPOP .	USP6
ARID1A	CD79B	DUSP9	FGFR3	HLA-DOA	KLLN	MYCN	PIM1	RHOA	SPRED1	USP8
<i>ARID1B</i>	CD80	E2F3	FGFR4	<i>HLA-DOB</i>	KMT2A	MYD88	PKN1	RHOB	SPRTN	USP9X
ARID2	CDC73	EBF1	FGR	HLA-DPA1	KMT2B	MYH11	PLAG1	RHPN2	SPTA1	VAV1
ARID3A	CDH1	ECT2L	FH	HLA-DPB1	KMT2C	МҮН9	PLCB4	RICTOR	SPTAN1	VEGFA
ARID4B	CDH10	EED	FHIT	HLA-DPB2	KMT2D	MYO18A	PLCG1	RINT1	SRC	VHL
ARID5B	CDH4	EEF1A1	FLCN	HLA-DQA1	KNSTRN	MYOD1	PLCG2	RIT1	SRP72	VTCN1
ASMTL	CDK12	EEF2	FLI1	HLA-DQA2	KRAS	NADK	PLK2	RNF111	SRSF2	WAS
ASXL1	CDK4	EGFL7	FLNA	HLA-DQB1	KRT222	NBN	PLXNB2	RNF139	SS18	WDR90
ASXL2	CDK6	EGFR	FLT1	HLA-DQB2	LAG3	NCOA2	PMAIP1	RNF43	SSBP2	WEE1
ATF7IP	CDK8	EGLN1	FLT3	HLA-DRA	LATS1	NCOA3	PML	ROBO1	STAG1	WIF1
ATM	CDKN1A	EGR1	FLT4	HLA-DRB1	LATS2	NCOR1	PMS1	ROS1	STAG2	WNK2
ATP6AP1	CDKN1B	EGR2	FLYWCH1	HLA-DRB5	LCK	NCOR2	PMS2	RPA1	STAT1	WRN
ATP6V1B2	CDKN1C	EGR3	FOXA1	HLA-DRB6	LDB1	NCSTN	PNRC1	RPL10	STAT2	WT1
ATR	CDKN2A	EIF1AX	FOXA2	HLA-E	LEF1	NECTIN4	POLD1	RPL22	STAT3	WWTR1
ATRX	CDKN2B	EIF3E	FOXD4L1	HLA-F	LEMD2	NEGR1	POLE	RPL5	STAT4	XBP1
ATXN3	CDKN2C	EIF4A2	FOXL2	HLA-G	LIFR	NEIL2	POLH	RPS15	STAT5A	XIAP
ATXN7	CEBPA	EIF4E	FOXO1	HLTF	LMO1	NF1	POLQ	RPS20	STAT5B	XPA
AURKA	CENPA	ELANE	FOXO3	HMGA2	LRP1B	NF2	POLR2A	RPS3A	STAT6	XPC
AURKB	CFTR	ELF3	FOXP1	HNF1A	LRP5	NFATC2	POLRMT	RPS6KA3	STK11	XPO1
AXIN1	CHD2	ELOC	FOXQ1	HNRNPK	LRP6	NFE2	POT1	RPS6KA4	STK19	XRCC1
AXIN2	CHD3	ELP2	FRK	HOXA11	LRRK2	NFE2L2	POU2F2	RPS6KB1	STK40	XRCC2
AXL	CHD4	EML4	FRS2	HOXB13	LTB	NFKBIA	PPARG	RPS6KB2	SUFU	XRCC3

REPORT DATE 04 July 2024

Precision Panel- 1000 Genes

				Fusions	/ Trans	location	ıs			
	2	111111111111111111111111111111111111111	322				r =====	F 9-	1122 0	
CAMTA1	CYP17A1	FAM135B	H2BC11	IRS1	MGMT	PASK	PTPRT	SHOC2	TMSB4XP8	
CALR	CYLD	FAF1	H2AC6	IRF8	MGA	PARPBP	PTPRS	SHH	TMSB4X	
CAD	CXCR4	EZR	H2AC17	IRF6	MET	PARP4	PTPRO	SH2D1A	TMPRSS2	
CACNA1D	CUX1	EZHIP	H2AC16	IRF4	MERTK	PARP3	PTPRD	SH2B3	TMEM30A	
CACNA1A	CUL4B	EZH2	H2AC11	IRF2	MEN1	PARP2	PTPRC	SGK1	TMEM127	
C8orf34	CUL4A	EZH1	H19	IRF1	MEF2C MEF2D	PARP1	PTPN6	SF3B1	TLX3	
C3orf70	CUL3	EXT2	H1-4	INSR	MEF2C	PALB2	PTPN2	SF3A1	TLR9	
BUB1B	CUL1	EXT1	H1-3	INFF3D INPPL1	MED12 MEF2B	PAK5	PTPN14	SF1	TLR4	
BTLA	CTNND1 CTR9	EXOSC6	H1-2	INFF4B INPP5D	MECOM MED12	PAK3	PTPN13	SETDB1 SETDB2	TLL2	
BTG2 BTK	CTNND1 CTNND1	EXO1	GTF21 GTSE1	INFF4A INPP4B	MECOM	PAK1	PTPN11	SETD2 SETDB1	TIPARP	
BTG2	CTNNA1 CTNNB1	EWSR1	GTF2I	INDOU INPP4A	MEAF6	PAG1	PTPDC1 PTPN1	SETD1B SETD2	THRAP3	
BKSK1 BTG1	CTLA4 CTNNA1	ETV5 ETV6	GSK3B	INHBA INO80	MDM2 MDM4	PABPC1	PTP4A1 PTPDC1	SETBP1 SETD1B	THADA	
BRSK1	CTDNEP1 CTLA4	ETV4 ETV5	GRINZD GRM3	INHA INHBA	MDC1 MDM2	P2RY8	PTMA PTP4A1	SESNS SETBP1	TGIF1	
BRIP1	CTCF CTDNEP1	ETV1 ETV4	GRINZA GRIN2D	ING1 INHA	MCL1 MDC1	NUP98 NUTM1	PTK2B PTMA	SESN2 SESN3	TGFBR2	
BRINP3	CTCF	ETV1	GREM1 GRIN2A	IL/R ING1	MC1R MCL1	NUP93 NUP98	PTK2 PTK2B	SERPINB4 SESN2	TGFBR1	
BRD7	CSNKIAI CTC1	ETNKI ETS1	GPS2 GREM1	IL631 IL7R	MBD4 MC1R	NUP214 NUP93	PTEN PTK2	SERPINB3 SERPINB4	TFG	
BRD4	CSF3K CSNK1A1	ESKKA ETNK1	GPC3 GPS2	IL4R IL6ST	MAX MBD4	NUP133 NUP214	PTCH2 PTEN	SERPINAT SERPINB3	TFEB	
BRD3	CSF1R CSF3R	ESR1 ESRRA	GNB1 GPC3	IL3 IL4R	+	NUMBL NUP133	PTCH1 PTCH2	SERP2 SERPINA1	TFE3	
BRCC3	CSDE1 CSF1R	ESR1	GNAS GNB1	IL2KG IL3	MAST1 MAST2	NUF2 NUMBL	PSMB3 PTCH1	SERP2	TET3	
BRCA2	CSDE1	ERG ERRFI1	GNAQ GNAS	IL2RB IL2RG	MAPK3 MAST1	NUF2	PSIP1 PSMB5	SDHC SDHD	TET2	LNSN2
BRCA1	CRLF2 CRTC1	ERG	GNAI2 GNAQ	IL2 IL2RB	MAPK1 MAPK3	NUDT15	PRSS8 PSIP1	SDHB SDHC	TET1	ZRANB3 ZRSR2
BRAF		ERCCO	GNA13 GNA12	IL10 IL2	+	NTRK2 NTRK3		SDHAF2 SDHB	TERT	
BLM BMPR1A	CRLF1	ERCC5 ERCC6	GNA12 GNA13	IKZF3 IL10	MAP3K6 MAP3K7	NTRK1 NTRK2	PRPS1 PRSS1	SDHA SDHAF2	TERF1	ZNF/30 ZNRF3
BIRC3 BLM	CREBBP CRKL	ERCC4 ERCC5	GNA11 GNA12	IKZF2 IKZF3	MAP3K4 MAP3K6	NTHL1 NTRK1	PRPF8 PRPS1	SDC4 SDHA	TENT5D TERC	ZNF703 ZNF750
BCR	CREB3L3	ERCC3	GLIS2	IKZF1	MAP3K14	NT5E	PRPF40B	SCG5 SDC4	TENT5C	ZNF384
BCORL1	CRBN	ERCC2	GL12	IKBKE	MAP3K13	NT5C2	PRKN	SCAF4	TEK	ZNF24
BCOR BCORL 1	CPS1	ERCC1	GLI1	IGF2	MAP3K1	NSD3	PRKDC	SBDS	TDG	ZNF217
BCLAF1	COP1	ERBB4	GID4	IGF1R	MAP2K4	NSD2	PRKD1	SAMHD1	TCL1B	ZNF133
BCL9	COL7A1	ERBB3	GEN1	IGF1	MAP2K2	NSD1	PRKCI	SAMD9L	TCL1A	ZMYM3
BCL7A	COL5A1	ERBB2	GEM CEN1	IFNGR2	MAP2K1	NRG1	PRKCD	SAMD9	TCF7L2	ZMYM2
BCL6	COL1A1	EGP1	GATA6	IFNGR1	MAMLD1	NRAS	PRKCB	SALL4	TCF3	ZFP36L2
BCL2L2	CNOT9	EPHB4	GATA4	IFNAR1	MAML2	NR4A3	PRKCA	S1PR2	TCF12	ZFP36L1
BCL2L12	CNBD1	EPHB1	GATA3	ID01	MALT1	NPRL2	PRKAR1A	RYBP	TBX3	ZFHX3
BCL2L11	CMTR2	EPHA7	GATA2	IDH2	MAGI2	NPM1	PRKACA	RXRA	TBL1XR1	ZCCHC12
BCL2L1	CLIP1	EPHA5	GATA1	IDH1	MAGED1	NOTCH4	PRF1	RUNX1T1	TAPBP	ZC3H12A
BCL2	CKS1B	EPHA3	GALNT12	ID3	MAFB	<i>NOTCH3</i>	PREX2	RUNX1	TAP2	ZBTB7B
BCL11B	CILK1	ЕРНА2	GADD45B	ICOSLG	MAF	NOTCH2	PRDM14	RTEL1	TAP1	ZBTB20
BCL10	CIITA	EPCAM	GABRA6	ICOS	MAD2L2	NOTCH1	PRDM1	RSP03	TAL1	ZBTB2
BBC3	CIC	EPC1	GAB2	HUWE1	MACF1	NOD1	PPP6C	RSP02	TAF15	YY1AP1
BARD1	СНЕК2	EPAS1	GAB1	HSP90AB1	LZTR1	NKX3-1	PPP4R2	RRAS2	TAF1	YWHAE
BAP1	СНЕК1	EP300	FYN	HSP90AA1	LYN	NKX2-1	PPP2R2A	RRAS	SYK	YES1
BABAM1	CHD8	ENG	FUS	HSD3B1	LUC7L2	NIPBL	PPP2R1A	RRAGC	SUZ12	YEATS4
	CHD7	EMSY	FUBP1	HRAS	LTK	NFKBIE	PPM1D	RPTOR	SUSD2	YAP1