Test Description

The MolQ Comprehensive Panel includes 500+ key solid tumor genes (for SNV, CNV, TMB, MSI and fusions) that are well characterized in the published literature and associated with oncology drugs that are FDA approved, part of NCCN guidelines, or in clinical trials.

Patient Demographic

Name: Mr. Anil Sharma

Sex: Male

Date of Birth/Age: 72 years **Disease**: Metastatic carcinoma

Clinician

Clinician Name: Dr Amit Verma

PATIENT Anil Sharma

Medical Facility: Dr AV Institute of Personalized Therapy

REPORT DATE BOOKING ID

28 March 2024 #012403120198

and Cancer Research (IPTCR) Pathologist: Not Provided

Specimen

Booking ID: 012403120198

Sample Type: FFPE Block No. B-711/24 (Liver Biopsy)

Tumor Content Percentage: 20% Date of Collection: 15-03-2024 Date of Booking: 12-03-2024

CLINICAL SYNOPSIS

Anil Sharma, is a known case of carcinoma of prostate with metastatic small cell neuroendocrine carcinoma. His brother had carcinoma of the prostate at the age of 48 years. Liver biopsy has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULT SUMMARY

Variants detected as per NCCN Guidelines: No clinically relevant alteration detected.

Other variants detected: *RAD52* (p.Ser346*, VAF= 48.52%), *PALB2* (p.Thr773Lysfs*78, VAF= 44.11%), (p.Asp765Lysfs*87, VAF= 31.61%) and (p.Phe776Glnfs*24, VAF= 31.31%) mutations are present.

HRD Status: HR Proficient (HRD-).

Note: The average Base Coverage Depth achieved was 2114X in this sample.

RESULTS

No clinically relevant alteration was detected.

Tumor Mutation Burden is 2.85 Mut/Mb.

Microsatellite Instability (MSI) is stable.

RELEVANT BIOMARKERS

Gene/ Transcript (Locus)	Variant ID	Variant	Exon	Coverage	Allele Frequency	Variant Effect	*Relevant 7 (In this cancer type)	-	Tier ²
PALB2 (chr16:23641145)	-	c.2325_2329delA TTCG (p.Phe776Glnfs* 24)	5	1958	31.31%	Frameshift Deletion	- None	olaparib ⁱ talazoparib + hormone I therapy ⁱ rucaparib	
PALB2 (chr16:23641157)	-	c.2317delA (p.Thr773Lysfs* 78)	5	1977	44.11%	Frameshift Deletion			IIc
PALB2 (chr16:23641181)	-	c.2293_2294delG AinsCTTG (p.Asp765Lysfs* 87)	5	1958		Frameshift Block Substitution	_		
RAD52 (chr12:1023218)	-	c.1037C>A (p.Ser346*)	11	1999	48.52%	Nonsense	None	None	IIc

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

- * Public data sources included in relevant therapies: FDAi, NCCN, EMAii, ESMO
- ²Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

Not identified.

CLINICAL CORRELATION AND VARIANT INTERPRETATION

PALB2 p.Phe776Glnfs*24; p.Thr773Lysfs*78; p.Asp765Lysfs*87

Gene description: The PALB2 gene encodes the partner and localizer of BRCA2 protein that binds to and promotes intranuclear localization of the breast cancer 2 early onset (BRCA2) protein¹. Also known as FANCN, PALB2 belongs to the Fanconi Anemia (FA) complementation group of proteins that also include FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCE, FANCG, FANCI, FANCJ (BRIP1), FANCL, and FANCM. FA genes are tumor suppressors that play a role in interstrand cross-link (ICL) DNA repair through homologous recombination repair (HRR) of double-strand breaks (DSB) and nucleotide excision repair (NER)². Loss of function mutations of genes in the FA family and HRR pathway, including PALB2, can result in the BRCAness phenotype, characterized by a defect in the HRR pathway, mimicking BRCA1 or BRCA2 loss³,4. Germline mutations in FA genes lead to Fanconi Anemia, a condition characterized by chromosomal instability and congenital abnormalities including bone marrow failure and cancer predisposition^{5,6}. Specifically, biallelic germline mutations in PALB2 loss of function confer a predisposition to pediatric malignancies^{7,8}. Additionally, monoallelic germline mutations in PALB2 have been associated with an increased risk of developing breast cancer^{7,9}.

Alterations and prevalence: Somatic alterations in *PALB2* include missense or truncating mutations and are observed in 2-6% of melanoma, uterine, bladder, breast, lung, stomach and colorectal cancers¹⁰.

Potential relevance: The PARP inhibitor, olaparib¹¹ is approved (2020) for metastatic castration-resistant prostate cancer (mCRPC) with deleterious or suspected deleterious, germline or somatic mutations in HRR genes that includes *PALB2*. Additionally, talazoparib¹² in combination with enzalutamide is approved (2023) for mCRPC with mutations in HRR genes that includes *PALB2*. In a phase II trial of patients with metastatic, castration-resistant prostate cancer, one patient exhibiting a somatic *PALB2* frameshift mutation exhibited durable response to olaparib for 39 weeks^{13,14}. However, olaparib resistance was observed following 9-months of treatment due to the emergence of a secondary deletion which restored the *PALB2* reading frame, a resistance mechanism similar to that observed in PARPi treated BRCA mutated patients^{14,15}. In 2022, the FDA granted fast track designation to the small molecule inhibitor, pidnarulex¹⁶, for *BRCA1/2*, *PALB2*, or other homologous recombination deficiency (HRD) mutations in breast and ovarian cancers. Rucaparib is recommended as a maintenance therapy for germline or somatic *PALB2* mutations in metastatic pancreatic cancer¹⁷.

REFERENCES

- 1. Xia et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol. Cell. 2006 Jun 23;22(6):719-29. PMID: 16793542
- 2. Niraj et al. The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol. 2019 Mar;3:457-478. PMID: 30882047
- 3. Lord et al. BRCAness revisited. Nat. Rev. Cancer. 2016 Feb;16(2):110-20. PMID: 26775620
- 4. Byrum et al. Defining and Modulating 'BRCAness'. Trends Cell Biol. 2019 Sep;29(9):740-751. PMID: 31362850
- 5. Michl et al. Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J. 2016 May 2;35(9):909-23. PMID: 27037238
- Abbasi et al. A rare FANCA gene variation as a breast cancer susceptibility allele in an Iranian population. Mol Med Rep. 2017 Jun;15(6):3983-3988.
 PMID: 28440412
- 7. Tischkowitz et al. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010 Oct 1;70(19):7353-9. PMID: 20858716
- 8. Reid et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 2007 Feb;39(2):162-4. PMID: 17200671
- 9. Rahman et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 2007 Feb;39(2):165-7. PMID: 172,00668
- 10. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 11. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/208558s028lbl.pdf
- 12. https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/211651s012lbl.pdf

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

- 13. Mateo et al. DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. N. Engl. J. Med. 2015 Oct 29;373(18):1697-708. PMID: 26510020
- 14. Goodall et al. Circulating Cell-Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition. Cancer Discov. 2017 Sep;7(9):1006-1017. PMID: 28450425
- 15. D'Andrea. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst.), 2018 Nov;71:172-176. PMID: 30177437
- 16. https://www.senhwabio.com//en/news/20220125
- 17. NCCN Guidelines® NCCN-Pancreatic Adenocarcinoma [Version 1.2024]

RAD52 p.Ser346*

Coverage Frequency 1999

Gene description: The *RAD52* gene encodes the RAD52 homolog, DNA repair protein¹. RAD52 binds to single- and double-stranded DNA and enables strand exchange for double-strand break (DSB) repair by binding to RAD51². RAD52 also promotes DSB repair through homologous recombination repair (HRR) by recruiting BRCA1 to sites of DSBs, which leads to the removal of TP53BP1 and prevents DSB repair by non-homologous end joining (NHE])³.

Alterations and prevalence: Somatic mutations in *RAD52* are observed in 2% of uterine corpus endometrial carcinoma, uterine carcinosarcoma, and skin cutaneous melanoma^{4,5}.

Potential relevance: Currently, no therapies are approved for RAD52 aberrations.

REFERENCES

- 1. O'Leary et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. PMID: 26553804
- 2. Jalan et al. Emerging Roles of RAD52 in Genome Maintenance. Cancers (Basel). 2019 Jul 23;11(7). PMID: 31340507
- 3. Yasuhara et al. Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell. 2018 Oct 4;175(2):558-570.e11. PMID: 30245011
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct; 45(10):1113-20. PMID: 24071849
- 5. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877

RECOMMENDATIONS

- Validation of the variant(s) by Sanger sequencing is recommended to rule out false positives.
- Genetic counselling is advised for interpretation on the consequences of the variant(s).
- If results obtained do not match the clinical findings, additional testing should be considered as per referring clinician's recommendations.

ativala

Jatinder Kaur, PhD

Head, Molecular Biology & Genomics

Dr. Gulshan Yadav, MD Head, Pathology

APPENDIX 1: TEST METHODOLOGY

METHOD

Pathology Assessment

The FFPE block is reviewed for presence of tumor cells and tumor percentage by histopathologists through screening of H & E staining slides.

Assay Methods

The test was performed using the Oncomine Comprehensive Assay Plus targeted, amplicon based next-generation sequencing assay that analyses 500+ unique genes for SNV, CNV, TMB, MSI and fusions. The minimum of 20ng of DNA isolated by Qiagen nucleic acid isolation kit is amplified using Oncomine Comprehensive assay plus as per the instruction manual. The amplicon libraries are prepared from 4 pools of primer which includes 2 pools of DNA based targets. The amplified primer pools are enzyme fragmented and Ion adapter barcodes are added. Amplified library is purified followed by quantitation using Ion Library TaqManTM Quantitation Kit. The quality of amplified libraries having 150-200bp sizes are confirmed by Agilent TapeStation. The quantified pooled library is loaded on Ion 550 Chip using Ion Chef and sequencing is performed on the Ion GeneStudio S5 prime system. For the current report RNA was not included.

Secondary Analysis Methods

The sequence data is processed using Ion Torrent server and the Ion reporter software 5.20.2.0. TMB is reported as High (>10 mutations/Mb), Intermediate (>3 to 10 mutations/Mb) and Low (<3 mutations/Mb). All the reported alterations are manually curated using Integrative Genomics Viewer (IGV). The Final report is generated using oncomine knowledgebase which includes contextual investigations of sample-specific variants with respect to labels, guidelines (AMP, ASCO, CAP), current clinical trials and peer-reviewed literature which is frequently updated.

Genes Assayed

The panel covers 1.50M bases of DNA region, including 1.06M bases of exonic regions. It includes a total of 500+ genes covering 165 hotspot genes, 333 genes with focal CNV gains and loss, 227 genes with full coding sequence (CDS), >1 Mb exonic regions for TMB evaluation and 76 MSI markers for Microsatellite Instability (MSI) and Microsatellite stable (MSS). It also covers 46 genes (SNVs, Indels, CNVs) for homologous recombination deficiency (HRD) including *BRCA1* and *BRCA2*. A subset of these (20 genes) were assessed for determining Loss of Heterozygosity (LOH) at gene level. Details available on request.

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic, diagnostic, and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well-powered studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV : Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases.

DISCLAIMER

• This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third

Comprehensive Panel-500 Genes

parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.

- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.
- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. Molo Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

LIMITATIONS

- Testing has been performed assuming that the sample received belongs to the above-named individual(s) and any stated relationships between individuals are accepted as true.
- Due to inherent technology limitations, coverage is not uniform across all regions. Hence pathogenic variants present in areas of insufficient coverage may not be analyzed/reported.
- Variants with very low allele frequency (<5%) present in the given specimen or lower copy number variation might not be detected. Similarly fusion variants with less read may not be detected.
- Variant detection is also based on tumor percentage and affected by tumor heterogeneity. The FFPE fixation issues and the age of the block also widely affects the genomic findings.

PATIENT

REPORT DATE BOOKING ID 28 March 2024 #012403120198

Anil Sharma

Comprehensive Panel-500 Genes

- The classification and interpretation of all the variants in this assay reflects the current state of scientific understanding at the time this report was issued. In some instances, the classification and interpretation of such variants may change as new scientific information comes to light.
- Test results should be interpreted in context of clinical findings, tumor sampling, histopathology, and other laboratory data.
- If results obtained do not match other clinical laboratory findings, please contact the laboratory for possible. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- Genetic testing is highly accurate. Rarely, inaccurate results may occur for various reasons. These reasons include, but are not limited to mislabelled samples, inaccurate reporting of clinical/medical information, rare technical errors or unusual circumstances such as bone marrow transplantation, blood transfusion; or the presence of change(s) in such a small percentage of cells that may not be detectable by the test (mosaicism).

APPENDIX 2: GENE LIST

Gene	Gene	Gene	Gene	Gene	Gene	Gene
			HOTSPOT Ge	nes		
AKT1	AKT2	AKT3	ALK	AR	BRAF	EGFR
ERBB2	ERBB4	ESR1	FGFR1	FGFR2	FGFR3	MET
NTRK1	NTRK3	PIK3CA	РІКЗСВ	PRKACA	RAF1	RARA
RET	ROS1	STAT6	TERT	NTRK2	ABL1	ABL2
ARAF	AURKA	AURKC	AXL	BCL2	BCL2L12	BCL6
CARD11	CBL	CCND1	CCND2	CCND3	CCNE1	CDK4
CDK6	CHD4	DDR2	EIF1AX	ERBB3	EZH2	FAM135B
FGFR4	FLT3	FLT4	FOXA1	GATA2	GNAS	H3-3A
Н3-3В	IDH2	IKBKB	IL7R	KDR	KIT	KLF5
KRAS	MAGOH	MAP2K1	MAPK1	MAX	MDM4	MECOM
MEF2B	MITF	MPL	MTOR	МҮС	MYCN	MYD88
NFE2L2	NRAS	PCBP1	PDGFRA	PDGFRB	PIK3C2B	PIK3R2
PIM1	PLCG1	PPP2R1A	PPP6C	PTPN11	PXDNL	RAC1
RHEB	RICTOR	RIT1	SETBP1	SF3B1	SLCO1B3	SMC1A
SMO	SPOP	SRC	STAT3	TOP1	TPMT	U2AF1
USP8	XPO1	ZNF217	ZNF429	ACVR1	ATP1A1	BCR
BMP5	BTK	CACNA1D	CD79B	CSF1R	CTNNB1	CUL1
CYSLTR2	DGCR8	DROSHA	E2F1	EPAS1	FGF7	FOXL2
FOXO1	GLI1	GNA11	GNAQ	H2BC5	H3C2	HIF1A
HRAS	IDH1	IL6ST	IRF4	IRS4	KLF4	KNSTRN
MAP2K2	MED12	MYOD1	NSD2	NT5C2	NUP93	PAX5
PIK3CD	PIK3CG	PTPRD	RGS7	RHOA	RPL10	SIX1
SIX2	SNCAIP	SOS1	SOX2	SRSF2	STAT5B	TAF1
TGFBR1	TRRAP	TSHR	WAS			
			CNVs GAIN			
ADAMTS12	ADAMTS2	BMPR2	CSMD3	DOCK3	DSC1	DSC3
ERAP1	ERAP2	HLA-A	PDIA3	PMS1	PRDM9	PTPRT
RECQL4	TAP1	TAP2	TP63	TPP2		
	•	•	CNVs AND HOT	SPOT		·
ABL1	ABL2	AKT1	AKT2	AKT3	ALK	AR
ARAF	AURKA	AURKC	AXL	BCL2	BCL2L12	BCL6
BRAF	CARD11	CBL	CCND1	CCND2	CCND3	CCNE1
CDK4	CDK6	CHD4	DDR2	EGFR	EIF1AX	ERBB2
ERBB3	ERBB4	ESR1	EZH2	FAM135B	FGFR1	FGFR2
FGFR3	FGFR4	FLT3	FLT4	FOXA1	GATA2	GNAS
H3-3A	Н3-3В	IDH2	IKBKB	IL7R	KDR	KIT
KLF5	KRAS	MAGOH	MAP2K1	MAPK1	MAX	MDM4
MECOM	MEF2B	MET	MITF	MPL	MTOR	MYC
MYCN	MYD88	NFE2L2	NRAS	NTRK1	NTRK3	PCBP1
PDGFRA	PDGFRB	PIK3C2B	PIK3CA	PIK3CB	PIK3R2	PIM1
PLCG1	PPP2R1A	PPP6C	PRKACA	PTPN11	PXDNL	RAC1
RAF1	RARA	RET	RHEB	RICTOR	RIT1	ROS1
SETBP1	SF3B1	SLCO1B3	SMC1A	SMO	SPOP .	SRC
STAT3	STAT6	TERT	TOP1	TPMT	U2AF1	USP8

XPO1	ZNF217	ZNF429				
		GENE FU	SION (Inter & In	tra genetic)		
BRCA1	CDKN2A	MTAP	NOTCH1	NOTCH2	<i>NOTCH3</i>	AKT1
AKT2	AKT3	ALK	AR	BRAF	EGFR	ERBB2
ERBB4	ESR1	FGFR1	FGFR2	FGFR3	MET	NTRK1
NTRK3	PIK3CA	PIK3CB	PRKACA	RAF1	RARA	RET
ROS1	STAT6	TERT	NTRK2	YAP1	ERG	ETV1
ETV4	ETV5	MAP3K8	MYB	MYBL1	NRG1	NUTM1
PPARG	PRKACB	RELA	RSP02	RSP03	TFE3	TFEB
		(CNVs LOSS AND	CDS		
ADAMTS12	ADAMTS2	BMPR2	CSMD3	DOCK3	DSC1	DSC3
ERAP1	ERAP2	HLA-A	PDIA3	PMS1	PRDM9	PTPRT
RECQL4	TAP1	TAP2	TP63	TPP2	ABRAXAS1	ACVR1B
ACVR2A	AMER1	APC	ARHGAP35	ARID1A	ARID1B	ARID2
ARID5B	ASXL1	ASXL2	ATM	ATR	ATRX	AXIN1
AXIN2	B2M	BAP1	BARD1	BCOR	BLM	BRCA1
BRCA2	BRIP1	CASP8	CBFB	CD274	CD276	CDC73
CDH1	CDH10	CDK12	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CHEK1	СНЕК2	CIC	CREBBP	CTCF	CTLA4
CUL3	CUL4A	CUL4B	CYLD	CYP2C9	DAXX	DDX3X
DICER1	DNMT3A	DPYD	ELF3	ENO1	EP300	EPCAM
ЕРНА2	ERCC2	ERCC4	ERRFI1	ETV6	FANCA	FANCC
FANCD2	FANCE	FANCF	FANCG	FANCI	FANCL	FANCM
FAT1	FBXW7	FUBP1	GATA3	GNA13	GPS2	HDAC2
HDAC9	HLAB	HNF1A	INPP4B	JAK1	JAK2	JAK3
KDM5C	KDM6A	KEAP1	KMT2A	KMT2B	KMT2C	KMT2D
<i>LARP4B</i>	LATS1	LATS2	MAP2K4	MAP2K7	MAP3K1	MAP3K4
МАРК8	MEN1	MGA	MLH1	MLH3	MRE11	MSH2
MSH3	MSH6	MTAP	MUTYH	NBN	NCOR1	NF1
NF2	NOTCH1	NOTCH2	<i>NOTCH3</i>	NOTCH4	PALB2	PARP1
PARP2	PARP3	PARP4	PBRM1	PDCD1	PDCD1LG2	PGD
PHF6	PIK3R1	PMS2	POLD1	POLE	POT1	PPM1D
PPP2R2A	PRDM1	PRKAR1A	PTCH1	PTEN	RAD50	RAD51
<i>RAD51B</i>	RAD51C	RAD51D	RAD52	RAD54L	RASA1	RASA2
RB1	RBM10	RNASEH2A	RNASEH2B	RNF43	RPA1	RUNX1
SDHA	SDHB	SDHD	SETD2	SLX4	SMAD2	SMAD4
SMARCA4	SMARCB1	SOX9	SPEN	STAG2	STK11	SUFU
TBX3	TCF7L2	TET2	TGFBR2	TNFAIP3	TNFRSF14	TP53
TSC1	TSC2	USP9X	VHL	WT1	XRCC2	XRCC3
ZFHX3	ZMYM3	ZRSR2				
			CDS ONLY			
CALR	CIITA	CYP2D6	ERCC5	FAS	KLHL13	MTUS2
PSMB10	PSMB8	PSMB9	RPL5	RUNX1T1	STAT1	TMEM132D
UGT1A1	ZBTB20	ID3	RNASEH2C	RPL22	SDHC	SOCS1
	,	,	TMB ONLY	•	•	
A1CF	ACSM2B	ADAM18	ANO4	ARMC4	AURKB	BRINP3
C6	C8A	C8B	CANX	CASR	CD163	CNTN6
CNTNAP4	CNTNAP5	COL11A1	DCAF4L2	DCDC1	GALNT17	GPR158
GRID2	H1-4	HCN1	HLA-C	KCND2	KCNH7	KCNJ5

PATIENT Anil Sharma REPORT DATE BOOKING ID 28 March 2024 #012403120198

KEL	KIR3DL1	KRTAP21-1	KRTAP6-2	LRRC7	MARCO	NLRC5
NOL4	NRXN1	NYAP2	OR10G8	OR2G6	OR2L13	OR2L2
OR2L8	OR2M3	OR2T3	OR2T33	OR2T4	OR2W3	OR4A15
OR4C15	OR4C6	OR4M1	OR4M2	OR5D18	OR5F1	OR5L1
OR5L2	OR6F1	OR8H2	OR8I2	OR8U1	ORC4	PAK5
PCDH17	PDE1A	PDE1C	PLXDC2	POM121L12	PPFIA2	RBP3
REG1A	REG1B	REG3A	REG3G	RPTN	RUNDC3B	SH3RF2
SLC15A2	SLC8A1	SYT10	SYT16	TAPBP	TOP2A	TPTE
TRHDE	TRIM48	TRIM51	ZIM3	ZNF479	ZNF536	