

Test Description

The MolQ Liquid Precision Panel includes 50 genes, involving hotspot regions and 3159 unique variants, applicable to a wide range of tumor types for detection of SNV (single and multiple nucleotide variation), Insertion-Deletion, Copy Number Variation (CNV), and gene Fusions. Fusion and splice variants are detected in RNA.

Patient Demographic

Name: Mr Guneshwar Sharma Sex: Male Date of Birth/Age: 57 years Disease: Gastric carcinoma PATIENTREPORT DATEBOOKING IDGuneshwar Sharma28 Feb 2024#012402130085

Clinician

Clinician Name: Dr Amit Verma Medical Facility: Dr AV Institute of Personalized Cancer Therapy and Research Pathologist: Not Provided

Specimen

Booking ID: 012402130085 Sample Type: Blood Tumor Content Percentage: NA Date of Collection: 13-02-2024 Date of Booking: 13-02-2024

CLINICAL SYNOPSIS

Guneshwar Sharma, is a known case of gastric carcinoma. He has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULT SUMMARY

Variants detected as per NCCN Guidelines: No clinically relevant alteration detected.

Other variants detected:

KRAS (p.Gly12Cys, VAF= 0.95%) and TP53 (p.Arg282Trp, VAF= 18.50%] mutations are detected.

Note: The sequencing was performed on 26.6 ng of cfTNA in the given specimen. The average Base Coverage Depth achieved was 37230X in this sample.

RESULTS

No clinically relevant alteration was detected.

RELEVANT BIOMARKERS

Gene/ Transcript (Locus)	Variant ID	Variant	Exon	Coverage	Allele Frequency	Variant Effect	* Relevan (In this cancer type)	t Therapies (In other cancer type)	Tier ²
<i>KRAS</i> (chr12:25398285)	COSM516	c.34G>T (p.Gly12Cys)	2	422	0.95%	Missense	None	adagrasib ⁱ sotorasib ^{i,jii} adagrasib + cetuximab adagrasib + panitumumab bevacizumab+ chemotherapy cetuximab + sotorasib panitumumab + sotorasib	IIc

* Public data sources included in relevant therapies: FDAⁱ, NCCN, EMAⁱⁱ, ESMO

²Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

RELEVANT GASTRIC CANCER FINDINGS

Gene	Findings	Gene	Findings
ERBB2	None detected	NTRK2	None detected
NTRK1	None detected	NTRK3	None detected

OTHER VARIANT DETAILS

Gene/ Transcript (Locus)	Variant ID	Variant	Exon	Coverage	Allele Frequency	Variant Effect
<i>TP53</i> (chr17:7577094)	COSM10704	c.844C>T (p.Arg282Trp)	8	481	18.50%	Missense

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

Not identified.

CLINICAL CORRELATION AND VARIANT INTERPRETATION

KRAS p.Gly12Cys Coverage Frequency 422

Gene description: The *KRAS* proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the *RAS* superfamily which also includes *NRAS* and *HRAS*. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and surviva²⁻⁴.

Alterations and prevalence: Recurrent mutations in *RAS* oncogenes cause constitutive activation and are found in 20-30% of cancers. *KRAS* mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60% of pancreatic cancer⁵. The majority of *KRAS* mutations consist of point mutations occurring at G12, G13, and Q61⁵⁻⁷. Mutations at A59, K117, and A146 have also been observed but are less frequent^{8,9}.

Potential relevance: The FDA has approved the small molecule inhibitors, sotorasib¹⁰ (2021) and adagrasib¹¹ (2022), for the treatment of adult patients with *KRAS* G12C-mutated locally advanced or metastatic non-small cell lung cancer (NSCLC). The FDA has also granted breakthrough therapy designation (2022) to the *KRAS* G12C inhibitor, GDC-6036¹², for *KRAS* G12C mutation in non-small cell lung cancer. The small molecular inhibitor, RO-5126766, was granted breakthrough designation (2021) alone for *KRAS* G12V mutant non-small cell lung cancer or in combination with defactinib, for *KRAS* mutant endometrial carcinoma and *KRAS* G12V mutant non-small cell lung cancer¹³. The PLK1 inhibitor, onvansertib¹⁴, was granted fast track designation (2020) in combination with bevacizumab and FOLFIRI for second-line treatment of patients with *KRAS*-mutated metastatic colorectal cancer (mCRC). Additionally, the SHP2 inhibitor, BBP-398¹⁵ was granted fast-track designation (2022) in combination (2022) in contraindicated for treatment of colorectal cancer patients with *KRAS* mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁹. Additionally, *KRAS* mutations are associated with poor prognosis in NSCLC¹⁸.

REFERENCES

- 1. Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.
- 2. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

- 3. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- 4. Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/PP0.00000000000187. PMID: 27341593
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- 7. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 8. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- $10. \ https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/214665s003lbl.pdf$
- $11. \ https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/2163400 rig1s000 Corrected_lbl.pdf$
- 12. https://assets.cwp.roche.com/f/126832/x/5738a7538b/irp230202.pdf
- 13. https://investor.verastem.com//news-releases/news-release-details/verastem-oncology-reports-third-quarter-2022-financialresults
- 14. https://cardiffoncology.investorroom.com/2020-05-28-Cardiff-Oncology-Announces-Fast-Track-Designation-Granted-by-the-FDAto-Onvansertib-for-Second-Line-Treatment-of-KRAS-Mutated-Colorectal-Cancer
- 15. https://bridgebio.com/news/bridgebio-pharma-announces-first-lung-cancer-patient-dosed-in-phase-1-2-trial-and-us-fda-fast-trackdesignation-forshp2-inhibitor-bbp-398-in-combination-with-amgens-lumakras-sotorasib/
- 16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125084s279lbl.pdf
- 17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125147s210lbl.pdf
- 18. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829

TP53p.Arg282TrpCoverage Frequency 481

Gene description: The *TP53* gene encodes the p53 tumor suppressor protein that binds to DNA and activates transcription in response to diverse cellular stresses to induce cell cycle arrest, apoptosis, or DNA repair. In unstressed cells, TP53 is kept inactive by targeted degradation via MDM2, a substrate recognition factor for ubiquitin-dependent proteolysis. Alterations in *TP53* is required for oncogenesis as they result in loss of protein function and gain of transforming potential¹. Germline mutations in *TP53* are the underlying cause of Li-Fraumeni syndrome, a complex hereditary cancer predisposition disorder associated with early-onset cancers^{2,3}.

Alterations and prevalence: *TP53* is the most frequently mutated gene in the cancer genome with approximately half of all cancers experiencing *TP53* mutations. Ovarian, head and neck, esophageal, and lung squamous cancers have particularly high *TP53* mutation rates (60-90%)⁴⁻⁹. Approximately two-thirds of *TP53* mutations are missense mutations and several recurrent missense mutations are common including substitutions at codons R158, R175, Y220, R248, R273, and R2824,5. Invariably, recurrent missense mutations in *TP53* inactivate its ability to bind DNA and activate transcription of target genes¹⁰⁻¹³.

Potential relevance: The small molecule p53 reactivator, PC14586, received a fast track designation (2020) by the FDA for advanced tumors harboring a *TP53* Y220C mutation¹⁴. The FDA has granted fast track designation (2019) to the p53 reactivator, eprenetapopt,¹⁵ and breakthrough designation¹⁶ (2020) in combination with azacitidine or azacitidine and venetoclax for acute myeloid leukemia patients (AML) and myelodysplastic syndrome (MDS) harboring a *TP53* mutation, respectively. In addition to investigational therapies aimed at restoring wild-type *TP53* activity, compounds that induce synthetic lethality are also under clinical evaluation^{17,18}. *TP53* mutations confer poor prognosis and poor risk in multiple blood cancers including AML, MDS, myeloproliferative neoplasms (MPN), and chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL)¹⁹⁻²⁴. In mantle cell lymphoma, *TP53* mutations are associated with poor prognosis when treated with conventional therapy including hematopoietic cell transplant²⁵. Mono- and bi-allelic mutations in *TP53* confer unique characteristics in MDS, with multi-hit patients also experiencing associations with complex karyotype, few co-occurring mutations, and high-risk disease presentation as well as predicted death and leukemic transformation independent of the IPSS-R staging system²⁶.

REFERENCES

- 1. Muller et al. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell. 2014 Mar 17;25(3):304-17. PMID: 24651012
- Olivier et al. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001008. PMID: 20182602
- 3. Guha et al. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. Cold Spring Harb Perspect Med. 2017 Apr 3;7(4). PMID: 28270529
- 4. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

May;2(5):401-4. PMID: 22588877

- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Peter et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012 Sep 27;489(7417):519-25. PMID: 22960745
- 7. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015 Jan 29;517(7536):576-82. PMID: 25631445
- Campbell et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016 Jun;48(6):607-16. PMID: 27158780
- 9. Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017 Jan 12;541(7636):169-175. doi: 10.1038/nature20805. Epub 2017 Jan 4. PMID: 28052061
- 10. Olivier et al. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum. Mutat. 2002 Jun;19(6):607-14. PMID: 12007217
- 11. Rivlin et al. Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer. 2011 Apr;2(4):466-74. PMID: 21779514
- 12. Petitjean et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene. 2007 Apr 2;26(15):2157-65. PMID: 17401424
- 13. Soussi et al. Recommendations for analyzing and reporting TP53 gene variants in the high-throughput sequencing era. Hum. Mutat. 2014 Jun;35(6):766-78. PMID: 24729566
- 14. https://www.globenewswire.com/news-release/2020/10/13/2107498/0/en/PMV-Pharma-Granted-FDA-Fast-Track-Designationof-PC14586-for-the-Treatment-of-Advanced-Cancer-Patients-that-have-Tumors-with-a-p53-Y220C-Mutation.html
- 15. https://ir.aprea.com//news-releases/news-release-details/aprea-therapeutics-receives-fda-fast-track-designation
- 16. http://vp280.alertir.com/en/pressreleases/karolinska-development%27s-portfolio-company-aprea-therapeutics-receives-fdabreakthrough-therapydesignation-1769167
- 17. Parrales et al. Targeting Oncogenic Mutant p53 for Cancer Therapy. Front Oncol. 2015 Dec 21;5:288. doi: 10.3389/fonc.2015.00288. eCollection 2015. PMID: 26732534
- 18. Zhao et al. Molecularly targeted therapies for p53-mutant cancers. Cell. Mol. Life Sci. 2017 Nov;74(22):4171-4187. PMID: 28643165
- 19. NCCN Guidelines® NCCN-Acute Myeloid Leukemia [Version 4.2023]
- 20. Döhner et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377. PMID: 35797463
- 21. NCCN Guidelines® NCCN-Myelodysplastic Syndromes [Version 1.2023]
- 22. NCCN Guidelines® NCCN-Myeloproliferative Neoplasms [Version 2.2023]
- 23. NCCN Guidelines @ NCCN-Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma [Version 3.2023]
- 24. NCCN Guidelines® NCCN-Acute Lymphoblastic Leukemia [Version 2.2023]
- 25. NCCN Guidelines® NCCN-B-Cell Lymphomas [Version 5.2023]
- 26. Bernard et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat. Med. 2020 Aug 3. PMID: 32747829

RECOMMENDATIONS

• If results obtained do not match the clinical findings, additional testing should be considered as per referring clinician's recommendations.

atinda Kaus

Jatinder Kaur, PhD Head, Molecular Biology & Genomics

Dr. Gulshan Yadav, MD Head, Pathology

Method

APPENDIX 1: TEST METHODOLOGY

Circulating cell-free total nucleic acid (cfTNA) were isolated from samples using the MagMAX Cell-Free Total Nucleic Acid Isolation Kit. Quantity and quality is checked by Qubit assay and Tape station, respectively. After quality check the isolated and purified sample was directly loaded on Ion Torrent Genexus Next Generation Sequencer and subjected to automated library preparation and template preparation followed by in-depth sequencing.

It utilizes unique molecular tags to enable high sensitivity detection of variants. Analysis is done using Ion Torrent Reporter Software (version 6.6.2.1), the data is visualized on Integrative Genomics Viewer (IGV, version 5.01 (0)) and analyzed. The final report is generated using Oncomine curated knowledgebase reporter and includes clinical trials information continuously being updated for the best of the patient management as per clinical guidelines.

DISCLAIMER

- This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.
- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.
- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially

MolQLaboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.

- A negative value in liquid biopsy does not mean true absence of mutation. It may not be detectable in the blood sample but may still be positive in tissue biopsy.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

LIMITATIONS

- Variants with very low allele frequency (<0.5%) present in the given specimen or lower copy number variation might not be detected. Similarly fusion variants with less read may not be detected in liquid biopsy. Variant detection is also based on release of tumor cells or their fractions in the blood stream, it is affected by several factors.
- A negative report on liquid biopsy does not rule out the absence of variant.

APPENDIX 2: GENE LIST WITH COVERAGE

DNA Hotspots								
AKT1	AKT2	AKT3	ALK	AR	ARAF			
BRAF	CDK4	CDKN2A	CHEK2	CTNNB1	EGFR			
ERBB2	ERBB3	ERBB4	ESR1	FGFR1	FGFR2			
FGFR3	FGFR4	FLT3	GNA11	GNAQ	GNAS			
HRAS	IDH1	IDH2	KIT	KRAS	MAPK1			
MAPK2	MET	MTOR	NRAS	NTRK1	NTRK2			
NTRK3	PDGFRA	<i>РІКЗСА</i>	PTEN	RAF1	RET			
ROS1	SMO	TP53						
ALK AR CD274 CDKN2A EGFR ERBB2								
ERBB3	FGFR1	FGFR2	FGFR3	KRAS	MET			
PIK3CA	PTEN	101112	101105	MMD				
Inter-genetic Fusions								
ALK	BRAF	ESR1	FGFR1	FGFR2	FGFR3			
MET	NRG1	NTRK1	NTRK2	NTRK3	NUTM1			
RET	ROS1	RSPO2	RSP03					
Intra-genetic Fusions								
AR	EGFR	MET						