Test Description

The MolQ Comprehensive Panel includes 500+ key solid tumor genes (for SNV, CNV, TMB, MSI and fusions) that are well characterized in the published literature and associated with oncology drugs that are FDA approved, part of NCCN guidelines, or in clinical trials.

Patient Demographic

Name: Ms. Farida **Sex**: Female

Date of Birth/Age: 38 years

Disease: Breast carcinoma metastasis to lung

PATIENT Farida

27 Feb 2024

REPORT DATE BOOKING ID #012402060076

Clinician

Clinician Name: Dr Amit Verma

Medical Facility: Dr AV Institute of Personalized Therapy

and Cancer Research (IPTCR) Pathologist: Not Provided

Specimen

Booking ID: 012402060076

Sample Type: FFPE Block No. B-314/24 (Lung Biopsy)

Tumor Content Percentage: 30% Date of Collection: 06-02-2024 **Date of Booking:** 06-02-2024

CLINICAL SYNOPSIS

Farida, is a known case of breast carcinoma with metastasis to lung. Lung biopsy has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULT SUMMARY

Variants detected as per NCCN Guidelines: No clinically relevant alteration detected.

Other variants detected: *ESR1* (p.Asp538Gly, VAF= 22.46%) mutation is present.

Note: The average Base Coverage Depth achieved was 3487X in this sample.

RESULTS

Variant in ESR1 gene was detected.

Tumor Mutation Burden is 5.54 Mut/Mb.

Microsatellite Instability (MSI) is stable.

RELEVANT BIOMARKERS

Gene/ Transcript	Variant ID	Variant	Exon	Coverage	Allele Frequency	Variant Effect	*Relevant T	herapies	Tier ²
(Locus)							type)	cancer type)	_
ESR1 (chr6:152419926)	COSM94250	c.1613A>G (p.Asp538Gly)	9	2863	22.46%	Missense	Elacestrant ^{i,ii}	None	Ia

^{*} Public data sources included in relevant therapies: FDAⁱ, NCCN, EMAⁱⁱ, ESMO

RELEVANT BREAST CANCER FINDINGS

Gene	Findings	Gene	Findings
AKT1	None detected	NTRK3	None detected

²Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

PATIENT	REPORT DATE	BOOKING ID
Farida	27 Feb 2024	#012402060076

ERBB2	None detected	PIK3CA	None detected
ESR1	p.Asp538Gly; c.1613A>G	PTEN	None detected
NTRK1	None detected	RET	None detected
NTRK2	None detected		

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

Not identified.

CLINICAL CORRELATION AND VARIANT INTERPRETATION

ESR1 p.Asp538Gly Coverage Frequency 2863

Gene description: The ESR1 gene encodes estrogen receptor 1 (ER α), which is a member of the superfamily of nuclear receptors which convert extracellular signals into transcriptional responses. A related gene, ESR2, encodes the cognate ER β protein. ER α is a ligand activated transcription factor regulated by the hormone estrogen^{1,2}. Estrogen binding to ER α results in receptor dimerization, nuclear translocation, and target gene transcription. In addition, estrogen binding to the ER α results in the activation of the RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, cAMP/PKA and PLC/PKC signaling pathways and cell proliferation and survival³.

Alterations and prevalence: Approximately 70% of breast cancers express ER α and ER β positivity. Mutations in the ER α ligand binding domain, including S463P, Y537S, and D538G, result in endocrine-independent constitutive receptor activation, which is a common mechanism of endocrine resistance⁴⁻⁷. *ESR1* gene fusions and *ESR1* copy number gains have also been observed and are associated with advanced endocrine resistant disease⁸⁻¹².

Potential relevance: The FDA has approved elacestrant¹³ (2023) for the treatment of postmenopausal women or adult men with ER-positive/ERBB2-negative, *ESR1*-mutated advanced or metastatic breast cancer¹⁴. The FDA has also granted fast track designations to three therapies: seviteronel¹⁵ (2016) for ER-positive breast cancer, lasofoxifene¹⁶ (2019) for *ESR1* mutated, ER-positive/ERBB2 negative metastatic breast cancer, and camizaestrant¹⁷ for *ESR1* mutated, HR-positive/ERBB2 negative metastatic breast cancer. Anti-estrogen (endocrine) treatments such as tamoxifen¹⁸ (1977), fulvestrant¹⁹ (2002), letrozole²⁰ (1995), and exemestane²¹ (2005) are FDA approved for ER-positive metastatic breast cancers^{22,23}. Although ERα and ERβ positivity predicts response to endocrine therapies, about a quarter of patients with primary breast cancer and almost all patients with metastatic disease will develop endocrine resistance²⁴⁻²⁶.

REFERENCES

- 1. Paterni et al. Estrogen receptors alpha (ER α) and beta (ER β): subtype-selective ligands and clinical potential. Steroids. 2014 Nov;90:13-29. PMID: 24971815
- 2. Dahlman-Wright et al. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol. Rev. 2006 Dec; 58(4):773-81. PMID: 17132854
- 3. Marino et al. Estrogen signaling multiple pathways to impact gene transcription. Curr. Genomics. 2006;7(8):497-508. PMID:18369406
- 4. Chang. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 2012 May;20(3):256-67. PMID: 24130921
- 5. Toy et al. ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat. Genet. 2013 Dec; 45(12):1439-45. PMID:24185512
- 6. Jeselsohn et al. Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor-Positive Breast Cancer. Clin. Cancer Res. 2014 Apr 1;20(7):1757-1767. PMID: 24398047
- 7. Robinson et al. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. 2013 Dec;45(12):1446-51. doi: 10.1038/ng.2823. Epub 2013 Nov 3. PMID: 24185510
- 8. Hartmaier et al. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer. Ann. Oncol. 2018 Apr 1;29(4):872-880. PMID: 29360925
- 9. Matissek et al. Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor-Positive Breast Cancer. Cancer Discov. 2018 Mar;8(3):336-353. PMID: 29242214

Comprehensive Panel-500 Genes

- 10. Lei et al. ESR1 fusions drive endocrine therapy resistance and metastasis in breast cancer. Mol Cell Oncol. 2018;5(6):e1526005. PMID: 30525098
- 11. Lei et al. Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Rep. 2018 Aug 7;24(6):1434-1444.e7. PMID: 30089255
- 12. Basudan et al. Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer. Mol. Cancer Res. 2019 Feb;17(2):457-468. PMID: 30355675
- 13. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/2176390rig1s001lbl.pdf
- 14. NCCN Guidelines® NCCN-Breast Cancer [Version 5.2023]
- 15. https://www.businesswire.com/news/home/20160106006206/en/Innocrin-Pharmaceuticals-Granted-Fast-Track-Designation-FDA
- 16. https://sermonixpharma.com/sermonix-receives-fda-fast-track-designation-for-investigational-drug-lasofoxifene/
- 17. https://www.astrazeneca.com/our-therapy-areas/pipeline.html
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2002/17970s37s44s49lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021344s044lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020726s035lbl.pdf
- $21. \quad https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020753s022lbl.pdf$
- 22. Tamoxifen--an update on current data and where it can now be used. Breast Cancer Res. Treat. 2002 Oct;75 Suppl 1:S7-12; discussion S33-5. PMID: 12353826
- 23. Kim et al. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer. J. Clin. Oncol. 2011 Nov 1;29(31):4160-7. PMID: 21947828
- Jeselsohn et al. ESR1 mutations—a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 2015 Oct;12(10):573-83. PMID:
- 25. Angus et al. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients. Cancer Treat. Rev. 2017 Jan;52:33-40. PMID: 27886589
- 26. Reinert et al. Clinical Implications of ESR1 Mutations in Hormone Receptor-Positive Advanced Breast Cancer. Front Oncol. 2017 Mar 15;7:26. PMID: 28361033

RECOMMENDATIONS

- Validation of the variant(s) by Sanger sequencing is recommended to rule out false positives.
- Genetic counselling is advised for interpretation on the consequences of the variant(s).
- If results obtained do not match the clinical findings, additional testing should be considered as per referring clinician's recommendations.

Jatinder Kaur, PhD

Head, Molecular Biology & Genomics

Dr. Gulshan Yadav, MD

Head, Pathology

APPENDIX 1: TEST METHODOLOGY

METHOD

Pathology Assessment

The FFPE block is reviewed for presence of tumor cells and tumor percentage by histopathologists through screening of H & E staining slides.

Assay Methods

The test was performed using the Oncomine Comprehensive Assay Plus targeted, amplicon based next-generation sequencing assay that analyses 500+ unique genes for SNV, CNV, TMB, MSI and fusions. The minimum of 20ng of DNA isolated by Qiagen nucleic acid isolation kit is amplified using Oncomine Comprehensive assay plus as per the instruction manual. The amplicon libraries are prepared from 4 pools of primer which includes 2 pools of DNA based targets. The amplified primer pools are enzyme fragmented and Ion adapter barcodes are added. Amplified library is purified followed by quantitation using Ion Library TaqManTM Quantitation Kit. The quality of amplified libraries having 150-200bp sizes are confirmed by Agilent TapeStation. The quantified pooled library is loaded on Ion 550 Chip using Ion Chef and sequencing is performed on the Ion GeneStudio S5 prime system. For the current report RNA was not included.

Secondary Analysis Methods

The sequence data is processed using Ion Torrent server and the Ion reporter software 5.20.2.0. TMB is reported as High (>10 mutations/Mb), Intermediate (>3 to 10 mutations/Mb) and Low (<3 mutations/Mb). All the reported alterations are manually curated using Integrative Genomics Viewer (IGV). The Final report is generated using oncomine knowledgebase which includes contextual investigations of sample-specific variants with respect to labels, guidelines (AMP, ASCO, CAP), current clinical trials and peer-reviewed literature which is frequently updated.

Genes Assayed

The panel covers 1.50M bases of DNA region, including 1.06M bases of exonic regions. It includes a total of 500+ genes covering 165 hotspot genes, 333 genes with focal CNV gains and loss, 227 genes with full coding sequence (CDS), >1 Mb exonic regions for TMB evaluation and 76 MSI markers for Microsatellite Instability (MSI) and Microsatellite stable (MSS). It also covers 46 genes (SNVs, Indels, CNVs) for homologous recombination deficiency (HRD) including *BRCA1* and *BRCA2*. A subset of these (20 genes) were assessed for determining Loss of Heterozygosity (LOH) at gene level. Details available on request.

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic, diagnostic, and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well-powered studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV : Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases.

DISCLAIMER

• This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third

Comprehensive Panel-500 Genes

parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.

- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.
- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. Molo Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

LIMITATIONS

- Testing has been performed assuming that the sample received belongs to the above-named individual(s) and any stated relationships between individuals are accepted as true.
- Due to inherent technology limitations, coverage is not uniform across all regions. Hence pathogenic variants present in areas of insufficient coverage may not be analyzed/reported.
- The classification and interpretation of all the variants in this assay reflects the current state of scientific understanding at the time this report was issued. In some instances, the classification and interpretation of such variants may change as new scientific information comes to light.
- Test results should be interpreted in context of clinical findings, tumor sampling, histopathology, and other laboratory data.

PATIENT Farida

REPORT DATE BOOKING ID 27 Feb 2024

#012402060076

Comprehensive Panel- 500 Genes

- If results obtained do not match other clinical laboratory findings, please contact the laboratory for possible. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- Genetic testing is highly accurate. Rarely, inaccurate results may occur for various reasons. These reasons include, but are not limited to mislabelled samples, inaccurate reporting of clinical/medical information, rare technical errors or unusual circumstances such as bone marrow transplantation, blood transfusion; or the presence of change(s) in such a small percentage of cells that may not be detectable by the test (mosaicism).

APPENDIX 2: GENE LIST

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ABL1	CDKN2A	FANCF	HIST3H3	MEN1	PIK3R3	SMAD3
ABL2	CDKN2B	FANCG	HLA-A	MET	PIM1	SMAD4
ACVR1	CDKN2C	FANCI	HLA-B	MGA	PLCG2	SMARCA4
ACVR1B	CEBPA	FANCL	HLA-C	MITF	PLK2	SMARCB1
AKT1	CENPA	FAS	HNF1A	MLH1	PMAIP1	SMARCD1
AKT2	CHD2	FAT1	HNRNPK	MLL	PMS1	SMC1A
AKT3	CHD4	FBXW7	HOXB13	MLLT3	PMS2	SMC3
ALK	CHEK1	FGF1	HRAS	MPL	PNRC1	SMO
ALOX12B	СНЕК2	FGF10	HSD3B1	MRE11A	POLD1	SNCAIP
ANKRD11	CIC	FGF14	HSP90AA1	MSH2	POLE	SOCS1
ANKRD26	CREBBP	FGF19	ICOSLG	MSH3	PPARG	SOX10
APC	CRKL	FGF2	ID3	MSH6	PPM1D	SOX17
AR	CRLF2	FGF23	IDH1	MST1	PPP2R1A	SOX2
ARAF	CSF1R	FGF3	IDH2	MST1R	PPP2R2A	SOX9
ARFRP1	CSF3R	FGF4	IFNGR1	MTOR	PPP6C	SPEN
ARID1A	CSNK1A1	FGF5	IGF1	MUTYH	PRDM1	SPOP
ARID1B	CTCF	FGF6	IGF1R	MYB	PREX2	SPTA1
ARID2	CTLA4	FGF7	IGF2	MYC	PRKAR1A	SRC
ARID5B	CTNNA1	FGF8	IKBKE	MYCL1	PRKCI	SRSF2
ASXL1	CTNNB1	FGF9	IKZF1	MYCN	PRKDC	STAG1
ASXL2	CUL3	FGFR1	IL10	MYD88	PRSS8	STAG2
ATM	CUX1	FGFR2	IL7R	MYOD1	PTCH1	STAT3
ATR	CXCR4	FGFR3	INHA	NAB2	PTEN	STAT4
ATRX	CYLD	FGFR4	INHBA	NBN	PTPN11	STAT5A
AURKA	DAXX	FH	INPP4A	NCOA3	PTPRD	STAT5B
AURKB	DCUN1D1	FLCN	INPP4B	NCOR1	PTPRS	STK11
AXIN1	DDR2	FLI1	INSR	NEGR1	PTPRT	STK40
AXIN2	DDX41	FLT1	IRF2	NF1	QKI	SUFU
AXL	DHX15	FLT3	IRF4	NF2	RAB35	SUZ12
B2M	DICER1	FLT4	IRS1	NFE2L2	RAC1	SYK
BAP1	DIS3	FOXA1	IRS2	NFKBIA	RAD21	TAF1
BARD1	DNAJB1	FOXL2	JAK1	NKX2-1	RAD50	TBX3
BBC3	DNMT1	FOXO1	JAK2	NKX3-1	RAD51	TCEB1
BCL10	DNMT3A	FOXP1	JAK3	NOTCH1	RAD51B	TCF3
BCL2	DNMT3B	FRS2	JUN	NOTCH2	RAD51C	TCF7L2
BCL2L1	DOT1L	FUBP1	KAT6A	<i>NOTCH3</i>	RAD51D	TERC
BCL2L11	E2F3	FYN	KDM5A	NOTCH4	RAD52	TERT
BCL2L2	EED	GABRA6	KDM5C	NPM1	RAD54L	TET1
BCL6	EGFL7	GATA1	KDM6A	NRAS	RAF1	TET2
BCOR	EGFR	GATA2	KDR	NRG1	RANBP2	TFE3
BCORL1	EIF1AX	GATA3	KEAP1	NSD1	RARA	TFRC
BCR	EIF4A2	GATA4	KEL	NTRK1	RASA1	TGFBR1
BIRC3	EIF4E	GATA6	KIF5B	NTRK2	RB1	TGFBR2
BLM	EML4	GEN1	KIT	NTRK3	RBM10	TMEM127
BMPR1A	EP300	GID4	KLF4	NUP93	RECQL4	TMPRSS2
BRAF	EPCAM	GLI1	KLHL6	NUTM1	REL	TNFAIP3

BRCA1	ЕРНА3	GNA11	KMT2B	PAK1	RET	TNFRSF14
BRCA2	EPHA5	GNA13	KMT2C	PAK3	RFWD2	TOP1
BRD4	EPHA7	GNAQ	KMT2D	PAK7	RHEB	TOP2A
BRIP1	EPHB1	GNAS	KRAS	PALB2	RHOA	TP53
BTG1	ERBB2	GPR124	LAMP1	PARK2	RICTOR	TP63
BTK	ERBB3	GPS2	LATS1	PARP1	RIT1	TRAF2
C11orf30	ERBB4	GREM1	LATS2	PAX3	RNF43	TRAF7
CALR	ERCC1	GRIN2A	LMO1	PAX5	ROS1	TSC1
CARD11	ERCC2	GRM3	LRP1B	PAX7	RPS6KA4	TSC2
CASP8	ERCC3	GSK3B	LYN	PAX8	RPS6KB1	TSHR
CBFB	ERCC4	H3F3A	LZTR1	PBRM1	RPS6KB2	U2AF1
CBL	ERCC5	H3F3B	MAGI2	PDCD1	RPTOR	VEGFA
CCND1	ERG	НЗГЗС	MALT1	PDCD1LG2	RUNX1	VHL
CCND2	ERRFI1	HGF	MAP2K1	PDGFRA	RUNX1T1	VTCN1
CCND3	ESR1	HIST1H1C	MAP2K2	PDGFRB	RYBP	WISP3
CCNE1	ETS1	HIST1H2BD	MAP2K4	PDK1	SDHA	WT1
CD274	ETV1	HIST1H3A	MAP3K1	PDPK1	SDHAF2	XIAP
CD276	ETV4	HIST1H3B	MAP3K13	PGR	SDHB	XPO1
CD74	ETV5	HIST1H3C	MAP3K14	PHF6	SDHC	XRCC2
CD79A	ETV6	HIST1H3D	MAP3K4	PHOX2B	SDHD	YAP1
<i>CD79B</i>	EWSR1	HIST1H3E	MAPK1	PIK3C2B	SETBP1	YES1
CDC73	EZH2	HIST1H3F	МАРКЗ	PIK3C2G	SETD2	ZBTB2
CDH1	FAM123B	HIST1H3G	MAX	PIK3C3	SF3B1	ZBTB7A
CDK12	FAM175A	HIST1H3H	MCL1	PIK3CA	SH2B3	ZFHX3
CDK4	FAM46C	HIST1H3I	MDC1	PIK3CB	SH2D1A	ZNF217
CDK6	FANCA	HIST1H3J	MDM2	PIK3CD	SHQ1	ZNF703
CDK8	FANCC	HIST2H3A	MDM4	PIK3CG	SLIT2	ZRSR2
CDKN1A	FANCD2	HIST2H3C	MED12	PIK3R1	SLX4	
CDKN1B	FANCE	HIST2H3D	MEF2B	PIK3R2	SMAD2	