

Date of Birth/Age: 46 years **Disease**: Lung Adenocarcinoma

PATIENT

Mahaveer

Test Description

Liquid precision panel is a comprehensive cancer genomic NGS assay to accurately and rapidly identify key actionable biomarkers and provide precision treatment options including Chemotherapy, Targeted Therapy and Immunotherapy. This assay screens both exonic and selected intronic regions of >1000 genes with known genomic alterations with high coverage depth. The assay can detect all classes of genomic alterations, including SNVs, small Indels, CNVs and selected translocations. In addition, TMB, MSI and HRD are analyzed to help guide immunotherapy decisions.

Patient Demographic

Name: Mr. Mahaveer

Sex: Male

Clinician

Clinician Name: Dr Amit Verma

Medical Facility: Dr AV Institute of Personalized Cancer

REPORT DATE

14 Feb 2024

BOOKING ID

#012401240051

Therapy and Research Pathologist: Not Provided

Specimen

Booking ID: 012401240051 **Sample Type**: Blood

Tumor Content Percentage: NA **Date of Collection:** 24-01-2024 **Date of Booking:** : 24-01-2024

CLINICAL SYNOPSIS

Mahaveer, is a known case of lung adenocarcinoma. He has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULT SUMMARY

Potential clinically significant alteration was observed in *MAP3K1* (p.Ser941Tyrfs*62, VAF=02%).

MAP3K1 mutations may induce dysregulation in JNK signaling pathway that result in defective apoptosis, leading to unresponsiveness to environmental and genotoxic stresses. However, its mutation effects in lung cancer still warrants further clinical investigations.

Variant of Unknown Significance (VUS) detected:

ATM mutation (p.Ile2683Thr, VAF= 48%) is present in the given sample.

Although not clinically relevant in the current scenario, future reclassifications may need to be carefully monitored through a genomic counsellor.

Other Markers

Major immunotherapy markers (MSI and TMB) are low while PD-L1 is Positive in 1 CTC/1.5 mL. The overall HRD score is low

PD-L1-positive CTCs are prone to evasion from the innate immune system. Although therapeutic responses to Immunotherapy agents have not yet been established through PD- L1 positivity on CTCs, clinical correlation is advised.

RESULTS

Potential clinically significant alteration was observed in MAP3K1.

Gene	Variant	ariant Allele Va Frequency			nt Therapies (In other cancer type)	Tier
MAPK3K1	p.Ser941Tyrfs*62	02%	Insertion Frameshift	None	None	IId

As per guidelines of the ACMG/AMP/ASCO/CAP

 PATIENT
 REPORT DATE
 BOOKING ID

 Mahaveer
 14 Feb 2024
 #012401240051

VARIANT OF UNKNOWN SIGNIFICANCE (VUS)

ATM p.Ile2683Thr, VAF=48%, Tier III.

IMMUNO-ONCOLOGY FINDINGS

MSI/MMR Status NGS Based	TMB (Tissue / Blood)	PDL-1 IHC on tissue (TBx), Dako clone 22C3 or CTC (LBx)
2.35% Low	3.66 Muts/Mb Low	PD-L1 Positive in 1 CTC/ 1.5 mL

HOMOLOGOUS RECOMBINANT DEFICIENCY (HRD) FINDINGS

		Large State Transitions)
36% ATM	10% Low	TAI: 21% LST: 05%

Note: LOH score is calculated based on the genome wide LOH markers present in gene panel.

OTHER BIOMARKERS

Gene	Findings	Gene	Findings	
ALK	None detected	NTRK1	None detected	
BRAF	None detected	NTRK2	None detected	
EGFR	None detected	NTRK3	None detected	
ERBB2	None detected	RET	None detected	
KRAS	None detected	ROS1	None detected	
MET	None detected			

LONGITUDINAL MONITORING MARKERS

Circulating Tumor Cells (CTC)	CTC Cluster	Highest Mutant Allele Frequency	ct DNA Tumor Fraction (%)
1 CTC/1.5mL	0 CTC Cluster/1.5mL	None	100

Note: AI-powered probabilistic model is used to calculate the tumor fraction, enabling the simultaneous segmentation of the genome and accurate prediction of large-scale copy number variations. The model takes into consideration variations in clonality and copy number at each locus, ensuring a comprehensive analysis.

CLINICAL CORRELATION AND VARIANT INTERPRETATION

MAP3K1 p.Ser941Tyrfs*62

Gene description: MAP3K1, mitogen-activated protein kinase kinase kinase 1, is a E3 ubiquitin protein ligase and serine/threonine kinase that regulates JNK and ERK signaling and the full length Map3k1 protein functions in cell migration and cell survival, while the caspase-cleaved C-terminal Map3k1 fragment acts to promote apoptosis¹. MAP3K1 mutations have been

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

 PATIENT
 REPORT DATE
 BOOKING ID

 Mahaveer
 14 Feb 2024
 #012401240051

identified in breast cancer²⁻⁴. MAP3K1 activates the JNK pathway by selectively phosphorylating and activating MAP2K4^{5,6}. Deficiency in the JNK signaling pathway results in defective apoptosis, leading to unresponsiveness to environmental and genotoxic stresses⁷. According to AACR genie studies, MAP3K1 is altered in 3.24% of all cancers with breast invasive ductal carcinoma, lung adenocarcinoma, colon adenocarcinoma, endometrial endometrioid adenocarcinoma, and invasive breast carcinoma having the greatest prevalence of alterations.

REFERENCES

- 1. Pham T. T. et al. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes Cancer. 2013 Nov;4(11-12):419-26. doi: 10.1177/1947601913513950.
- 2. Carene D. et al., et al. Association between FGFR1 copy numbers, MAP3K1 mutations, and survival in axillary node-positive, hormone receptor-positive, and HER2-negative early breast cancer in the PACS04 and METABRIC studies. Breast Cancer Research and Treatment, January 2020, 179 (Suppl 1). DOI:10.1007/s10549-019-05462-y
- 3. Nixon M.J. et al. PIK3CA and MAP3K1 alterations imply luminal A status and are associated with clinical benefit from pan-PI3K inhibitor buparlisib and letrozole in ER+ metastatic breast cancer. NPJ Breast Cancer. 2019 Sep 23:5:31. doi: 10.1038/s41523-019-0126-6. eCollection 2019.
- 4. Avivar-Valderas A. et al. Functional significance of co-occurring mutations in PIK3CA and MAP3K1 in breast cancer. Oncotarget. 2018 Apr 20; 9(30): 21444–21458. doi: 10.18632/oncotarget.25118. PMID: 29765551
- 5. Yan M. et al. Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1. Nature. 1994, 372:798-800.
- 6. Fanger G.R. et al. MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. The EMBO Journal. 1997, 16: 4961-4972.
- 7. Wagner E.F. et al. Signal integration by JNK and p38 MAPK pathways in cancer development. Nature Review Cancer 2009, 9:537-549.

RECOMMENDATIONS

- A follow-up liquid biopsy after 3 months may be recommended to explore markers for immunotherapy.
- Validation of the variant(s) by Sanger sequencing is recommended to rule out false positives.
- Genetic counselling is advised for interpretation on the consequences of the variant(s).
- If results obtained do not match the clinical findings, additional testing should be considered as per referring clinician's recommendations.

ativae 1

Jatinder Kaur, PhD Head, Molecular Biology & Genomics Dr. Gulshan Yadav, MD Head, Pathology

 PATIENT
 REPORT DATE
 BOOKING ID

 Mahaveer
 14 Feb 2024
 #012401240051

APPENDIX 1: TEST METHODOLOGY

Test Description & Methodology

Circulating cell-free total nucleic acid (cfTNA) were isolated from samples and after quality check was directly loaded on Next Generation Sequencer and subjected to automated library preparation and template preparation followed by sequencing. Analysis is done and the data is visualized on Integrative Genomics Viewer (IGV) and analyzed. The final report is generated using curated knowledgebase reporter. The assay has been optimized to enable rapid and accurate detection of true somatic alterations by effective sequencing of both tissue and ctDNA based blood samples with high sensitivity and specificity for supporting reliable treatment decisions. The assay can detect all classes of genomic alterations, including Single Nucleotide Variants (SNVs), Small Insertions and Deletions (Indels), Copy Number Alterations (Amplifications) and selected translocations with minimal amounts of routine clinical samples (including core or fine-needle biopsies). In addition, all samples are simultaneously profiled for Tumor Mutation Burden (TMB), Microsatellite Instability (MSI) status and Homologous Recombination Deficiency (HRD) to help guide immunotherapy decisions. MSI status is reported as MSI-High, MSI-Intermediate or MSI-Stable (MSS). TMB status is reported for all cancer types as TMB-High (≥10 Muts/Mb), or TMB-Low (<10 Muts/Mb).

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic , diagnostic , and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well-powered studies with expert consensus .
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV : Benign or Likely Benign Variants		Observed at significant allele frequency in the general or specific subpopulation databases.

DISCLAIMER

- This report was generated using the materials and methods as recommended which required the use of quality reagents, protocols, instruments, software, databases and other items, some of which were provided or made accessible by third parties. A defect or malfunction in any such reagents, protocols, instruments, software, databases and/or other items may compromise the quality or accuracy of the report.
- The report has been created based on, or incorporated inferences to, various scientific manuscripts, references, and other sources of information, including without limitation manuscripts, references, and other sources of information that were prepared by third parties that describe correlations between certain genetic mutations and particular diseases (and/or certain therapeutics that may be useful in ameliorating the effects of such diseases). Such information and correlations are subject to change over time in response to future scientific and medical findings. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the accuracy of the information provided by or contained in such manuscripts, references, and other sources is later determined to be inaccurate, the accuracy and quality of the Report may be adversely impacted. MolQ Laboratory is not obligated to notify you of any of the impact that future scientific or medical findings may have on the report.
- The report must always be interpreted and considered within the clinical context, and a physician should always consider the report along with all other pertinent information and data that a physician would prudently consider prior to providing a diagnosis or developing and implementing a plan of care for the patient. The report should never be considered or relied upon alone in making any diagnosis or prognosis. The manifestations of many diseases are caused by more than one gene

 PATIENT
 REPORT DATE
 BOOKING ID

 Mahaveer
 14 Feb 2024
 #012401240051

variant, a single gene variant may be relevant to more than one disease, and certain relevant gene variants may not have been considered in the report. In addition, many diseases are caused or influenced by modifier genes, epigenetic factors, environmental factors, and other variables that are not addressed by the report. This report is based on a Next Generation Assay which does not distinguish between a somatic and a germline variant. If germline variant is in question, further testing is recommended. The report provided by MolQ Laboratory is on a "as is" basis. MolQ Laboratory makes no representation or warranty of any kind, expressed or implied, regarding the report. In no event will MolQ Laboratory be liable for any actual damages, indirect damages, and/or special or consequential damages arising out of or in any way connected with the Report, your use of the report, your reliance on the report, or any defect or inaccurate information included within the report.

- Medical knowledge and annotation are constantly updated and reflects the current knowledge at the time.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory as required by the CLIA 1988 regulations. The report, and the tests used to generate the Report have not been cleared or approved by the US Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The test results have scientifically shown to be clinically useful.

REPORT DATE 14 Feb 2024 BOOKING ID #012401240051

Liquid Precision Panel- 1000 Genes

APPENDIX 2: GENE LIST WITH COVERAGE

	DNA Hotspots									
ABCB1	CARD11	CYP19A1	FANCA	H2BC12	IRS2	MIB1	PAX3	QKI	SHQ1	TNFAIP3
ABL1	CARM1	CYP2D6	FANCB	H2BC17	IRS4	MIDEAS	PAX5	RAB35	SIN3A	TNFRSF11A
ABL2	CASP8	CYSLTR2	FANCC	H2BC4	ITGAM	MIR142	PAX7	RABEP1	SIRPA	TNFRSF14
ABRAXAS1	CBFA2T3	DACH1	FANCD2	H2BC5	ITK	MITF	PAX8	RAC1	SLC26A3	TNFRSF17
ACTA2	CBFB	DAXX	FANCE	H3-3A	ITPKB	MKI67	PAXIP1	RAC2	SLC34A2	TNFRSF18
АСТВ	CBL	DAZAP1	FANCF	Н3-3В	JAK1	MKNK1	PBRM1	RAD21	SLFN11	TNFRSF4
ACVR1	CBLB	DCSTAMP	FANCG	Н3-4	JAK2	MLH1	PC	RAD50	SLIT2	TNFRSF9
ACVR1B	CBLC	DCUN1D1	FANCI	Н3-5	JAK3	МLН3	PCBP1	RAD51	SLX4	TOP1
ACVR2A	CBWD3	DDB2	FANCL	H3C1	JARID2	MLLT1	<i>PCLO</i>	RAD51B	SMAD2	TOP2A
ADGRA2	CCDC6	DDR1	FANCM	H3C10	JAZF1	MLLT10	PDCD1	RAD51C	SMAD3	TP53
ADGRB1	CCL2	DDR2	FAS	H3C11	JUN	MLLT3	PDCD11	RAD51D	SMAD4	TP53BP1
AGO1	CCN6	DDX3X	FASLG	H3C12	KANSL1	MPL	PDCD1LG2	RAD52	SMARCA1	TP63
AGO2	CCNB3	DDX41	FAT1	H3C13	KAT6A	MR1	PDGFB	RAD54B	SMARCA2	TPMT
AJUBA	CCND1	DEK	FBXO11	H3C14	KAT6B	MRE11	PDGFRA	<i>RAD54L</i>	SMARCA4	TPTE2
AKT1	CCND2	DHX9	FBXO31	H3C15	KBTBD4	MRTFA	PDGFRB	RAF1	SMARCAL1	TRAF2
AKT2	CCND3	DIAPH2	FBXW7	Н3С2	KDM2B	MRTFB	PDK1	RANBP17	SMARCB1	TRAF3
АКТЗ	CCNE1	DICER1	FCGR2A	Н3С3	KDM4C	MSH2	PDPK1	RANBP2	SMARCD1	TRAF5
ALB	CCR2	DIS3	FCGR3A	H3C4	KDM5A	MSH3	PDS5B	RARA	SMARCE1	TRAF7
ALK	CCR4	DIS3L2	FGF1	Н3С6	KDM5C	MSH6	PGBD5	RASA1	SMC1A	TRIP13
ALOX12B	CCR5	DKC1	FGF10	H3C7	KDM6A	MSI2	PGR	RASGEF1A	SMC3	TRPA1
AMER1	ССТ6В	DKK4	FGF12	H3C8	KDM6B	MSMB	PHF6	RB1	SMO	TSC1
ANKRD11	CD19	DMD	FGF14	HAVCR2	KDR	MST1	РНОХ2В	RBM10	SMYD3	TSC2
ANKRD26	CD22	DNAJB1	FGF19	HDAC1	KEAP1	MST1R	PICALM	RBM15	SNCAIP	TSHR
APC	CD27	DNM2	FGF2	HDAC2	KEL	MT1JP	PIGA	RBM38	SOCS1	TSLP
APH1A	CD274	DNMT1	FGF23	HDAC4	KIF1A	MTAP	PIK3C2B	RECQL	SOCS2	TUSC3
APLNR	CD274 CD276	DNMT3A	FGF3	HDAC7	KIF1B	MTOR	PIK3C2G	RECQL4	SOCS2 SOCS3	TXNIP
APOB	CD276	DNMT3B	FGF4	HDAC9	KIF5B	MUC17	PIK3C3	REL	SOS1	TYK2
AR AR	CD28	DOCK8	FGF5	HGF	KIR3DL1	MUC6	PIK3CA	RELA	SOX10	TYRO3
ARAF	CD33	DOCK8 DOT1L	FGF6	HIF1A	KIKSDLI	MUSK	PIK3CA PIK3CB	RELN	SOX10	U2AF1
ARFRP1	CD30	DROSHA	FGF7	HLA-A	KLF2	MUTYH	PIK3CD	REST	SOX17	U2AF1 U2AF2
ARHGAP26	CD58	DTX1	FGF8	HLA-B	KLF2 KLF3	MYB	PIK3CG	RET	SOX2 SOX9	UBE2T
ARHGAP35	CD36	DUSP2	FGF9	ньа-в HLA-С	KLF3 KLF4	MYBL1	PIK3CG PIK3R1	RFC1	SDA9 SP140	UBR5
ARHGEF10	CD70 CD74	DUSP2 DUSP22	FGFR1	HLA-DMA	KLF4 KLF5	MYC	PIK3R1 PIK3R2	RGPD3	SP140 SPEN	UNCX
ARHGEF10 ARHGEF12	CD74 CD79A	DUSP22 DUSP4	FGFR2	HLA-DMA HLA-DMB	KLF3 KLHL6	MYCL	PIK3R2 PIK3R3	RHEB	SPEN SPOP	USP6
					KLHLO				SPRED1	
ARID1A	CD79B CD80	DUSP9 E2F3	FGFR3	HLA-DOA		MYCN	PIM1 PKN1	RHOA RHOB		USP8
ARID1B	CD80 CDC73	EZF3 EBF1	FGFR4 FGR	HLA-DOB	KMT2A KMT2B	MYD88	PKN1 PLAG1	RHPN2	SPRTN SPTA1	USP9X VAV1
ARID2	CDC73 CDH1		FGK FH	HLA-DPA1	KMT2B KMT2C	MYH11 MYH9	PLAGI PLCB4		SPTA1 SPTAN1	VAV I VEGFA
ARID3A		ECT2L		HLA-DPB1	*** ****		D. C.C.	RICTOR	00.0	
ARID4B	CDH10	EED EEE1 A 1	FHIT	HLA-DPB2		MYO18A MYOD1	PLCG1	RINT1	SRC SDD72	VHL VTCN1
ARID5B	CDH4	EEF1A1	FLCN	HLA-DQA1	KNSTRN	MYOD1	PLCG2	RIT1	SRP72	
ASMTL	CDK12	EEF2	FLI1	HLA-DQA2	KRAS	NADK	PLK2	RNF111	SRSF2	WAS
ASXL1	CDK4	EGFL7	FLNA	HLA-DQB1	KRT222	NBN	PLXNB2	RNF139	SS18	WDR90
ASXL2	CDK6	EGFR	FLT1	HLA-DQB2	LAG3	NCOA2	PMAIP1	RNF43	SSBP2	WEE1
ATF7IP	CDK8	EGLN1	FLT3	HLA-DRA	LATS1	NCOA3	PML PMC1	ROBO1	STAG1	WIF1
ATM	CDKN1A	EGR1	FLT4	HLA-DRB1	LATS2	NCOR1	PMS1	ROS1	STAG2	WNK2
ATP6AP1	CDKN1B	EGR2	FLYWCH1	HLA-DRB5	LCK	NCOR2	PMS2	RPA1	STAT1	WRN
ATP6V1B2	CDKN1C	EGR3	FOXA1	HLA-DRB6	LDB1	NCSTN	PNRC1	RPL10	STAT2	WT1
ATR	CDKN2A	EIF1AX	FOXA2	HLA-E	LEF1	NECTIN4	POLD1	RPL22	STAT3	WWTR1
ATRX	CDKN2B	EIF3E	FOXD4L1	HLA-F	LEMD2	NEGR1	POLE	RPL5	STAT4	XBP1
ATXN3	CDKN2C	EIF4A2	FOXL2	HLA-G	LIFR	NEIL2	POLH	RPS15	STAT5A	XIAP
ATXN7	CEBPA	EIF4E	FOXO1	HLTF	LMO1	NF1	POLQ	RPS20	STAT5B	XPA
AURKA	CENPA	ELANE	FOXO3	HMGA2	LRP1B	NF2	POLR2A	RPS3A	STAT6	XPC
<i>AURKB</i>	CFTR	ELF3	FOXP1	HNF1A	LRP5	NFATC2	POLRMT	RPS6KA3	STK11	XP01
AXIN1	CHD2	ELOC	FOXQ1	HNRNPK	LRP6	NFE2	POT1	RPS6KA4	STK19	XRCC1
AXIN2	CHD3	ELP2	FRK	HOXA11	LRRK2	NFE2L2	POU2F2	RPS6KB1	STK40	XRCC2
AXL	CHD4	EML4	FRS2	НОХВ13	LTB	NFKBIA	PPARG	RPS6KB2	SUFU	XRCC3

	1								1	
B2M	CHD7	EMSY	FUBP1	HRAS	LTK	NFKBIE	PPM1D	RPTOR	SUSD2	YAP1
BABAM1	CHD8	ENG	FUS	HSD3B1	LUC7L2	NIPBL	PPP2R1A	RRAGC	SUZ12	YEATS4
BAP1	CHEK1	EP300	FYN	HSP90AA1	LYN	NKX2-1	<i>PPP2R2A</i>	RRAS	SYK	YES1
BARD1	СНЕК2	EPAS1	GAB1	HSP90AB1	LZTR1	NKX3-1	PPP4R2	RRAS2	TAF1	YWHAE
ВВС3	CIC	EPC1	GAB2	HUWE1	MACF1	NOD1	PPP6C	RSPO2	TAF15	YY1AP1
BCL10	CIITA	EPCAM	GABRA6	ICOS	<i>MAD2L2</i>	NOTCH1	PRDM1	RSPO3	TAL1	ZBTB2
BCL11B	CILK1	EPHA2	<i>GADD45B</i>	ICOSLG	MAF	NOTCH2	PRDM14	RTEL1	TAP1	ZBTB20
BCL2	CKS1B	ЕРНАЗ	GALNT12	ID3	MAFB	<i>NOTCH3</i>	PREX2	RUNX1	TAP2	<i>ZBTB7B</i>
BCL2L1	CLIP1	ЕРНА5	GATA1	IDH1	MAGED1	NOTCH4	PRF1	RUNX1T1	TAPBP	ZC3H12A
BCL2L11	CMTR2	EPHA7	GATA2	IDH2	MAGI2	NPM1	PRKACA	RXRA	TBL1XR1	ZCCHC12
BCL2L12	CNBD1	EPHB1	GATA3	IDO1	MALT1	NPRL2	PRKAR1A	RYBP	TBX3	ZFHX3
BCL2L2	CNOT9	ЕРНВ4	GATA4	IFNAR1	MAML2	NR4A3	PRKCA	S1PR2	TCF12	ZFP36L1
BCL6	COL1A1	EGP1	GATA6	IFNGR1	MAMLD1	NRAS	PRKCB	SALL4	TCF3	ZFP36L2
BCL7A	COL5A1	ERBB2	GEM	IFNGR2	MAP2K1	NRG1	PRKCD	SAMD9	TCF7L2	ZMYM2
BCL9	COL7A1	ERBB3	GEN1	IGF1	MAP2K2	NSD1	PRKCI	SAMD9L	TCL1A	<i>ZМҮМЗ</i>
BCLAF1	COP1	ERBB4	GID4	IGF1R	MAP2K4	NSD2	PRKD1	SAMHD1	TCL1B	ZNF133
BCOR	CPS1	ERCC1	GLI1	IGF2	MAP3K1	NSD3	PRKDC	SBDS	TDG	ZNF217
BCORL1	CRBN	ERCC2	GL12	IKBKE	MAP3K13	NT5C2	PRKN	SCAF4	TEK	ZNF24
BCR	CREB3L3	ERCC3	GLIS2	IKZF1	MAP3K14	NT5E	PRPF40B	SCG5	TENT5C	ZNF384
BIRC3	CREBBP	ERCC4	GNA11	IKZF2	MAP3K4	NTHL1	PRPF8	SDC4	TENT5D	ZNF703
BLM	CRKL	ERCC5	GNA12	IKZF3	MAP3K6	NTRK1	PRPS1	SDHA	TERC	ZNF750
BMPR1A	CRLF1	ERCC6	GNA13	IL10	MAP3K7	NTRK2	PRSS1	SDHAF2	TERF1	ZNRF3
BRAF	CRLF2	ERF	GNAI2	IL2	MAPK1	NTRK3	PRSS8	SDHB	TERT	ZRANB3
BRCA1	CRTC1	ERG	GNAQ	IL2RB	МАРКЗ	NUDT15	PSIP1	SDHC	TET1	ZRSR2
BRCA2	CSDE1	ERRFI1	GNAS	IL2RG	MAST1	NUF2	PSMB5	SDHD	TET2	
BRCC3	CSF1R	ESR1	GNB1	IL3	MAST2	NUMBL	РТСН1	SERP2	TET3	
BRD3	CSF3R	ESRRA	GPC3	IL4R	MAX	NUP133	РТСН2	SERPINA1	TFE3	
BRD4	CSNK1A1	ETNK1	GPS2	IL6ST	MBD4	NUP214	PTEN	SERPINB3	TFEB	
BRD7	CTC1	ETS1	GREM1	IL7R	MC1R	NUP93	PTK2	SERPINB4	TFG	
BRINP3	CTCF	ETV1	GRIN2A	ING1	MCL1	NUP98	PTK2B	SESN2	TGFBR1	
BRIP1	CTDNEP1	ETV4	GRIN2D	INHA	MDC1	NUTM1	PTMA	SESN3	TGFBR2	
BRSK1	CTLA4	ETV5	GRM3	INHBA	MDM2	P2RY8	PTP4A1	SETBP1	TGIF1	
BTG1	CTNNA1	ETV6	GSK3B	IN080	MDM4	PABPC1	PTPDC1	SETD1B	THADA	
BTG2	CTNNB1	EWSR1	GTF2I	INPP4A	MEAF6	PAG1	PTPN1	SETD2	THRAP3	
BTK	CTNND1	EXO1	GTSE1	INPP4B	МЕСОМ	PAK1	PTPN11	SETDB1	TIPARP	
BTLA	CTR9	EXOSC6	Н1-2	INPP5D	MED12	PAK3	PTPN13	SETDB2	TLL2	
BUB1B	CUL1	EXT1	Н1-3	INPPL1	MEF2B	PAK5	PTPN14	SF1	TLR4	
C3orf70	CUL3	EXT2	H1-4	INSR	MEF2C	PALB2	PTPN2	SF3A1	TLR9	
C8orf34	CUL4A	EZH1	Н19	IRF1	MEF2D	PARP1	PTPN6	SF3B1	TLX3	
CACNA1A	CUL4B	EZH2	H2AC11	IRF2	MEN1	PARP2	PTPRC	SGK1	TMEM127	
CACNA1D	CUX1	EZHIP	H2AC16	IRF4	MERTK	PARP3	PTPRD	SH2B3	TMEM30A	
CAD	CXCR4	EZR	H2AC17	IRF6	MET	PARP4	PTPRO	SH2D1A	TMPRSS2	
CALR	CYLD	FAF1	H2AC6	IRF8	MGA	PARPBP	PTPRS	SHH	TMSB4X	
CAMTA1	CYP17A1	FAM135B	H2BC11	IRS1	MGMT	PASK	PTPRT	SHOC2	TMSB4XP8	
C211/17/11		11111335	1125011	Fusions				5110.62	I MOD IXI O	
ABL1	BCL6	CIITA	DUSP22	FLI1	JAK2	MLLT10	NTRK3	RBM15	TCF3	TYK2
ABL2	BRAF	CREBBP	EPOR	FOXP1	KMT2A	MYC	PDGFB	RET	TCL1A	
ALK	CBFB	CRLF2	FGFR1	GATA1	MAF	NRG1	PDGFRA	ROS1	TCL1B	
BCL10	CCND1	CSF1R	FGFR2	IL3	MAFB	NTRK1	PDGFRB	RUNX1	TLX3	
BCL2	CCND3	DEK	FGFR3	IRF4	MALT1	NTRK2	RARA	TAL1	TP63	
	3020		- 0.1.0	F	r					