Comprehensive Panel- 590 Genes

Test Description

The MolQ Comprehensive Panel includes 590 key solid tumor genes that are well characterized in the published literature and associated with oncology drugs that are FDA approved, part of NCCN guidelines, or in clinical trials. The assay allows concurrent analysis of DNA and RNA in a single workflow involving detection of multiple types of variants, including hotspots, single nucleotide variants (SNVs), indels, CNVs and gene fusions.

Patient Demographic Name: Ms. Sadhvi Bansal Sex: Female Date of Birth/Age: 38 years Disease: Metastatic adenosquamous carcinoma of uterine cervix

PATIENTREPORT DATEBOOKING IDSadhvi Bansal20 Sep 2023#012308250261

Clinician

Clinician Name: Dr Amit Verma Medical Facility: Dr AV Institute of Personalized Therapy and Cancer Research (IPTCR) Pathologist: Not Provided

Specimen

Booking ID: 012308250261 Sample Type: FFPE Block ID- 1309/23 9 (1) Tumor Content Percentage: 90% Date of Collection: 21-08-2023 Date of Booking: 21-08-2023

CLINICAL SYNOPSIS

Sadhvi Bansal, is a known case of metastatic adenosquamous carcinoma of uterine cervix. She has been evaluated for pathogenic variations in the genes listed in Appendix 2.

RESULTS

Pathogenic variants were detected in *STK11* and *RB1* genes.

Tumor Mutation Burden is 14 Mut/Mb (TMB-Intermediate).

Microsatellite Instability (MSI) is stable.

Gene	Variant Nomenclature	Variant Allele Frequency	Location	Tier
<i>STK11</i> (NM_000455.5)	c.290+1G>A	87.44%	Intron 1	2D
<i>RB1</i> (NM_000321.3)	c.610G>T p.Glu204Ter	57.61%	Exon 7	2D

RELEVANT CANCER SPECIFIC FINDINGS

Gene	Findings (At DNA Level)	Gene	Findings (At RNA Level)
PTEN	None detected	FGFR	None detected
TP53	None detected	RET	None detected
BRAF	None detected	ALK	None detected
ADRID1A	None detected	NTRK	None detected
CTNNB1	None detected		
KRAS	None detected		

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Reference Laboratory: 28-29, Sector-18 (P) I Gurgaon, Haryana, 122015 I Phone 0124 - 4307906, Fax 0124 - 4278596 I Email: contact@molq.in

CLINICAL CORRELATION AND VARIANT INTERPRETATION

STK11 c.290+1G>A

Variant description: *STK11*, a tumor suppressor and intracellular kinase, is frequently mutated in various solid neoplasms. The *STK11* c.290+1G>A mutation is likely pathogenic. There are no FDA-approved or NCCN-compendium listed treatments specifically for patients with *STK11* c.290+1G>A mutant cervical adenosquamous carcinoma. Cervical adenosquamous carcinomas most frequently harbor alterations in *STK11*, *PTEN*, *PIK3CA*, *PIK3R1* and *KRAS*. Mutations in the *STK11* gene have been identified as being responsible for Peutz–Jeghers syndrome (PJS). Large genomic deletion in exon 1 of *STK11* gene has been associated with lobular endocervical gland hyperplasia (LEGH), minimal deviation adenocarcinoma (MDA) and mucinous adenocarcinoma of cervix. Inactivation of *STK11* may occur during progression from MDA to mucinous adenocarcinoma.

RB1 p.Glu204Ter

Variant description: *RB1*, a regulator of the cell cycle, is inactivated by mutation, deletion or allelic loss in various cancer types, including retinoblastoma and lung cancer. *RB1* E204* is a truncating mutation in a tumor suppressor gene, and therefore is likely oncogenic. There are no FDA-approved or NCCN-compendium listed treatments specifically for patients with *RB1* E204* mutant cervical adenosquamous carcinoma.

RB1 mutation was an independent survival predictor in stage IIB-IV Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC), and CESC patients with *RB1* mutation may be more sensitive to cisplatin.

RECOMMENDATIONS

- In view of the above observation and the high VAF of 87% in this case, the patient may be evaluated for germline *STK11* testing.
- Genetic counselling is advised for interpretation on the consequences of the variant(s).

REFERENCES

- 1. P Luo et al. Journal of Clinical Oncology 2019
- 2. The AACR Project GENIE Consortium. Cancer Discovery, 2017.

stinder Kaws

Jatinder Kaur, PhD Head, Molecular Biology & Genomics

wish

Dr. Gulshan Yadav, MD Head, Pathology

Method

APPENDIX 1: TEST METHODOLOGY

Massively Parallel Sequencing (Next Generation Sequencing): Tumor Nucleic acid from the submitted specimen was enriched for the coding regions of genes in the panel and splice site junctions of genes. DNA and RNA were extracted from samples using the Qiagen FFPE DNA and RNAeasy FFPE kit. Paired end sequencing was performed on Illumina platform (NovaSeq 6000/NextSeq2000) with a minimum depth of 500X. The assay allows concurrent analysis of DNA and RNA. Assay detect multiple types of variants, including hotspots, single nucleotide variants (SNVs), indels, CNVs, and gene fusions, in a single workflow. All positive variants are visualized on Integrative Genomics Viewer (IGV) and reported. MSI analysis was performed by Next Generation Sequencing.

AMP/ASCO/CAP Classification

Tier I : Variants of Strong Clinical Significance	1A	Biomarkers that predict response or resistance to US FDA-approved therapies for a specific type of tumor or have been included in professional guidelines as therapeutic, diagnostic, and/or prognostic biomarkers for specific types of tumors.
	1B	Biomarkers that predict response or resistance to a therapy based on well-powered studies with consensus from
		experts in the field, or have diagnostic and/or prognostic significance of certain diseases based on well- powered
		studies with expert consensus.
Tier II: Variants of	2C	Biomarkers that predict response or resistance to therapies approved by FDA or professional societies for a
Potential Clinical		different tumor type (ie, off-label use of a drug), serve as inclusion criteria for clinical trials, or have diagnostic
Significance		and/or prognostic significance based on the results of multiple small studies.
	2D	Biomarkers that show plausible therapeutic significance based on preclinical studies, or may assist disease diagnosis
		and/or prognosis themselves or along with other biomarkers based on small studies or multiple case reports
		with no consensus.
Tier III: Variants of		Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or
Unknown Clinical		tumor-specific variant databases No convincing published evidence of cancer association.
Significance		
Tier IV: Benign or		Observed at significant allele frequency in the general or specific subpopulation databases.
Likely Benign Variants		

Tumor Mutational Burden (TMB) analysis was performed based on Next Generation Sequencing analysis from genomic DNA isolated from a formalin-fixed paraffin-embedded tumor sample using the Illumina platform. TMB is calculated using nonsynonymous, in-frame indel, and frameshift indel mutations. The assay detects and annotates low frequency somatic variants (SNPs) from 590 genes related to cancer biology with a size of 1.8Mb.

TMB Interpretation: The TMB status is considered low if the TMB score is lower than 10; intermediate if the TMB score is between 10 and 15; and high if the TMB score is larger than 15.

TMB Clinical interpretation: Association of high TMB with improved response to immune checkpoint inhibitors such as nivolumab, ipilimumab, pembrolizumab, and atezolizumab in cancer types including non-small cell lung cancer, melanoma, and urothelial carcinoma are noted.

TMB could be a useful predictive biomarker for response to pembrolizumab therapy in patients with previously treated recurrent or metastatic advanced solid tumors¹⁻³.

The FDA has approved pembrolizumab in all cancers with TMB > 10Mut/Mb based on the findings from the phase 2 KEYNOTE-158 study.

References

- 1. Chan TA et al. Ann Oncol. 2019
- 2. Goodman AM et al. Mol Cancer Ther. 2017
- 3. Van Allen EM et al. Science.2016
- 4. Denis LJ et al. Cancer Cell 2021

Comprehensive Panel- 590 Genes

DISCLAIMER

- Interpretation of variants in this report is performed to the best knowledge of the laboratory based on the information available at the time of reporting. The classification of variants can change over time and MolQ cannot be held responsible for this. Please feel free to contact MolQ Laboratory (contact@molq.in) in the future to determine if there have been any changes in the classification of any variations. Re-analysis of variants in previously issued reports in light of new evidence is not routinely performed, but may be considered upon request, provided the variant is covered in the current panel.
- Due to inherent technology limitations of the assay, not all bases of the exome can be covered by this test. Accordingly, variants in regions of insufficient coverage may not be identified and/or interpreted. Therefore, it is possible that certain variants are present in one or more of the genes analyzed, but have not been detected. The variants not detected by the assay that was performed may/ may not impact the phenotype.
- It is also possible that a pathogenic variant is present in a gene that was not selected for analysis and/or interpretation in cases where insufficient phenotypic information is available.
- Genes with pseudogenes, paralog genes and genes with low complexity may have decreased sensitivity and specificity of variant detection and interpretation due to inability of the data and analysis tools to unambiguously determine the origin of the sequence data in such regions.
- The mutations have not been validated/confirmed by Sanger sequencing.
- Incidental or secondary findings (if any) that meet the ACMG guidelines can be given upon request.
- The report shall be generated within turnaround time (TAT), however, such TAT may vary depending upon the complexity of test(s) requested. MolQ Laboratory under no circumstances will be liable for any delay beyond afore mentioned TAT.
- It is hereby clarified that the report(s) generated from the test(s) do not provide any diagnosis or opinion or recommends any cure in any manner. MolQ Laboratory hereby recommends the patient and/or the guardians of the patients, as the case may be, to take assistance of the clinician or a certified physician or doctor, to interpret the report(s) thus generated. MolQ Laboratory hereby disclaims all liability arising in connection with the report(s).
- In a very few cases genetic test may not show the correct results, e.g. because of the quality of the material provided to MolQ Laboratory. In case where any test provided by MolQ Laboratory fails for unforeseeable or unknown reasons that cannot be influenced by MolQ Laboratory in advance, MolQ Laboratory shall not be responsible for the incomplete, potentially misleading or even wrong result of any testing if such could not be recognized by MolQ Laboratory in advance.
- This is a laboratory developed test and the development and the performance characteristics of this test was determined by reference laboratory.

LIMITATIONS

- Testing has been performed assuming that the sample received belongs to the above-named individual(s) and any stated relationships between individuals are accepted as true.
- Negative (wild type) result does not rule out the presence of a mutation that may be present but below the limits of detection of this assay. The analytical sensitivity of this assay is 5%. Sequencing is performed at a depth of 500x
- This test does not differentiate between somatic and germline alterations. Additional testing may be necessary to clarify the significance of results if there is a potential hereditary risk.
- Due to inherent technology limitations, coverage is not uniform across all regions. Hence pathogenic variants present in areas of insufficient coverage may not be analyzed/ reported.
- The classification and interpretation of all the variants in this assay reflects the current state of scientific understanding at the time this report was issued. In some instances, the classification and interpretation of such variants may change as new scientific information comes to light.
- Test results should be interpreted in context of clinical findings, tumor sampling, histopathology, and other laboratory data.
- If results obtained do not match other clinical laboratory findings, please contact the laboratory for possible. Misinterpretation of results may occur if the information provided is inaccurate or incomplete.
- Genetic testing is highly accurate. Rarely, inaccurate results may occur for various reasons. These reasons include, but are not limited to mislabelled samples, inaccurate reporting of clinical/medical information, rare technical errors or unusual circumstances such as bone marrow transplantation, blood transfusion; or the presence of change(s) in such a small percentage of cells that may not be detectable by the test (mosaicism).
- The TMB cutoff of 10 mutations/megabase was established in NSCLC and its applicability towards other tumor types has not been established at this time.
- Optimal thresholds for classification of TMB values into high, intermediate, and low categories are not yet standardized across different methods and panels.

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Reference Laboratory: 28-29, Sector-18 (P) | Gurgaon, Haryana, 122015 | Phone 0124 - 4307906, Fax 0124 - 4278596 | Email: contact@molq.in

- A TMB cutoff is a function of the gene panel (genomic footprint and bioinformatics platform) that is used in a given study. Since data obtained from a given gene panel cannot be directly applied to another panel without a conversion algorithm, direct comparisons of results between panels can be very problematic. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers.
- The Cancer Genome Atlas compares TMB values derived using WES, which is currently considered as the gold standard for calculating TMB.

APPENDIX 2: GENE LIST

Gene	Gene	Gene	Gene	Gene	Gene	Gene
ASPSCR1	CD99	ERCC3	IGF1	MYBL1	PPM1D	SPEN
ABCB1	CDC42	ERCC4	IGF1R	МҮС	PPP2R1A	SPINK1
ABCC2	CDC73	ERCC5	IGF2	MYCL	PPP2R2A	SPOP
ABL1	CDH1	ERF	IKBKE	MYCN	РРР6С	SPRED1
ACVR1	CDK1	ERG	IKZF1	MYD88	PRDM1	SQSTM1
ACVRL1	CDK12	ERRFI1	IL10	MYOD1	PREX2	SRC
ADCY9	CDK4	ESR1	IL7R	NAB2	PRKACA	SRP19
AFAP1	CDK6	ETV1	INHA	NACC2	PRKAR1A	SRSF2
AGBL4	CDK8	ETV4	INPP4A	NBN	PRKCI	SS18
AGO2	CDKN1A	ETV6	INPP4B	NCOA1	PRKD1	SSX1
AHCYL1	CDKN1B	EWSR1	INPPL1	NCOA2	PRSS1	SSX2
AIP	CDKN2A	EZH1	INSR	NCOA3	PTCH1	SSX4
ΑΚΑΡ9	CDKN2B	EZH2	IRF4	NCOA4	PTEN	STAG2
AKT1	CDKN2C	FAM175A	IRS1	NCOR1	PTPN11	STAT3
AKT2	CEBPA	FAM46C	IRS2	NDUFA13	PTPRD	STAT5A
АКТЗ	CFTR	FANCA	JAK1	NF1	PTPRS	STAT5B
ALK	CHD4	FANCC	JAK2	NF2	PTPRT	STAT6
ALOX12B	CHEK1	FANCD2	JAK3	NFASC	QKI	STK11
AMELY	СНЕК2	FANCE	JAZF1	NFE2L2	RAC1	STK19
AMER1	CHN1	FANCF	JUN	NFKBIA	RAC2	SUFU
ANKRD11	СНТОР	FANCG	KDM5A	NKX2-1	RAD21	SUZ12
ANO1	CIC	FANCI	KDM5C	NOTCH1	RAD50	SYK
ANTXR1	CLTC	FANCL	KDM5C	NOTCH2	RAD51	TACC1
АРС	COL1A1	FANCM	KDM6A	<i>NOTCH3</i>	RAD51B	ТАССЗ
AR	COL2A1	FAT1	KDR	NOTCH4	RAD51C	TAF15
ARAF	CREB1	FBXW7	KEAP1	NPM1	RAD51D	TAP1
ARHGEF2	CREB3L1	FEV	KIF1B	NR4A3	RAD52	TAP2
ARID1A	CREB3L2	FGF19	KIF5B	NRAS	RAD54L	TBX3
ARID1B	CREBBP	FGF23	KIT	NRG1	RAF1	TCF12
ARID2	CRKL	FGF3	KLF5	NSD1	RANBP2	TCF3
ARID5B	CRLF2	FGF4	KMT2A	NSD2	RARA	ΤΕΚ
ASCC1	CSDE1	FGFR1	KMT2B	NTHL1	RASA1	TERT
ASXL1	CSF1R	FGFR2	KMT2C	NTM	RASAL2	TET2
ASXL2	CSF3R	FGFR3	KMT2D	NTRK1	RB1	TFE3
ATF1	CTCF	FGFR4	KMT5A	NTRK2	RBM10	TFG
ATIC	CTLA4	FH	KNSTRN	NTRK3	RECQL	TGFBR1
ATM	CTNNA1	FLCN	KRAS	NUF2	RECQL4	TGFBR2
ATR	CTNNB1	FLI1	LATS1	NUP93	REL	ТМС6
ATRX	CUL3	FLT1	LATS2	NUTM2A	RET	ТМС8
AURKA	CXCR4	FLT3	LMO1	NUTM2B	RHBDF2	TMEM127
AURKB	CXORF67	FLT4	LYN	PAK1	RHEB	TMPRSS2
AXIN1	CYLD	FOXA1	MALT1	PALB2	RHOA	TNFAIP3
AXIN2	CYP19A1	FOXL2	MAP2K1	PALLD	RICTOR	TNFRSF14
AXL	CYP1B1	FOXO1	MAP2K2	PARK2	RIT1	TOE1

MolQ Laboratory (A Unit of Molecular Quest Healthcare Pvt. Ltd.)

Reference Laboratory: 28-29, Sector-18 (P) I Gurgaon, Haryana, 122015 I Phone 0124 - 4307906, Fax 0124 - 4278596 I Email: contact@molq.in

	Comprehensive Panel- 590 Genes
--	--------------------------------

PATIENT	REPORT DATE	BOOKING ID
Sadhvi Bansal	20 Sep 2023	#012308250261

B2M	CYP21A2	FOXO4	MAP2K4	PARP1	RNASEL	TOP1
BAG4	CYP2B6	FOXP1	MAP3K1	PATZ1	RNF43	TP53
BAIAP2L1	CYP2D6	FUBP1	MAP3K13	PAX2	ROS1	TP53BP1
BAP1	CYP3A4	FUS	MAP3K14	PAX3	RPA1	TP63
BARD1	CYP3A5	FYN	MAPK1	PAX5	RPS20	ТРМЗ
BCAN	CYSLTR2	GALNT12	MAX	PAX7	RPTOR	TPM4
BCL10	DAXX	GATA1	MBTD1	PAX8	RRAS	TPMT
BCL2	DDIT3	GATA2	MC1R	PBRM1	RRAS2	TPR
BCL2L1	DDR2	GATA3	MCL1	PDCD1	RTEL1	TRAF7
BCL6	DDX3X	GEN1	MDH2	PDCD1LG2	RUNX1	TRIM24
BCR	DICER1	GLI1	MDM2	PDE11A	RXRA	TSC1
BICC1	DIS3	GLIS3	MDM4	PDGFB	SCRIB	TSC2
BLM	DNAJB1	GNA11	MEAF6	PDGFRA	SDHA	TSHR
BMPR1A	DNMT1	GNAQ	MECOM	PDGFRB	SDHAF2	TSPAN31
BRAF	DNMT3A	GNAS	MED12	PGR	SDHB	TYMS
BRCA1	DNMT3B	GOPC	MEF2B	PHF1	SDHC	U2AF1
BRCA2	DOT1L	GREM1	MEN1	PHF6	SDHD	UGT1A1
BRD4	DPYD	GRIN2A	MET	РНОХ2В	SESN3	UGT1A8
BRD8	DROSHA	GSK3B	MGA	РІКЗС2В	SETD2	UPF1
BRIP1	DUX4	GSTP1	MGMT	PIK3C2G	SF3B1	VCL
BTK	EED	H3-3B	MIR143	ΡΙΚ3ϹΑ	SH2B3	VEGFA
CALR	EGFR	H3C1	MITF	<i>РІКЗСВ</i>	SH2D1A	VHL
CAMTA1	EHBP1	H3C11	MLH1	PIK3CD	SHOC2	WRN
CARD11	EIF1AX	H3C8	MLH3	PIK3CG	SHTN1	WT1
CARM1	ELF3	H3F3A	MPL	PIK3R1	SLC29A1	XIAP
CARS	ELOC	HDAC2	MPRIP	PIK3R2	SLC34A2	ХРС
CASP8	EML4	HEY1	MRE11	PIK3R3	SLC4A4	XPO1
CBFB	EMSY	HFE	MRE11A	PIM1	SLX4	XRCC1
CBL	ENG	HGF	MSH2	PLAG1	SMAD2	XRCC2
CCDC6	EP300	HIST1H3B	MSH3	PLCG1	SMAD3	XRCC3
CCNB3	EPC1	HLA-A	MSH6	PLCG2	SMAD4	YAP1
CCND1	EPC2	HMGA2	MSI	PLK2	SMARCA4	YWHAE
CCND2	EPCAM	HNF1A	MSMB	PMS1	SMARCB1	ZC3H7B
CCND3	EPHA3	НООКЗ	MSR1	PMS2	SMARCD1	ZFHX3
CCNE1	EPHA5	HOXB13	MST1	POLD1	SMO	ZMYM3
CCNQ	EPHB1	HRAS	MST1R	POLE	SMYD3	ZNF217
CD274	ERBB2	ICOSLG	ΜΤΑΡ	POU6F2	SOCS1	ZNF703
CD34	ERBB3	ID3	MTHFD1	PPARA	SOS1	ZRSR2
CD74	ERBB4	IDH1	MTHFR	PPARG	SOX17	
CD79A	ERCC1	IDH2	MTOR	PPHLN1	SOX2	
CD79B	ERCC2	IFNGR1	MUTYH	PPL	SOX9	

Reference Laboratory: 28-29, Sector-18 (P) | Gurgaon, Haryana, 122015 | Phone 0124 - 4307906, Fax 0124 - 4278596 | Email: contact@molq.in