FOUND		Patient Name NE Tomar , R.K.	-	Report Date 10 June 2016	Tumor T Prostate adenoca	acinar
Date of Birth	05 September 1959	Medical Facility	Max Healthcare	:	Specimen Received	03 June 2016
Sex	Male	Ordering Physician	Verma, Amit	:	Specimen Site	Not Provided
FMI Case #	TRF158423	Additional Recipient	Not Given		Date of Collection	31 May 2016
Medical Record #	Not Given	Medical Facility ID #	201107	:	Specimen Type	Block
Specimen ID	H-1697/16	Pathologist	Not Provided			

ABOUT THE TEST:

FoundationOne™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS

TUMOR TYPE: PROSTATE ACINAR ADENOCARCINOMA

3 genomic alterations

16 therapies associated with potential clinical benefit

0 therapies associated with lack of response

9 clinical trials

Genomic Alterations Identified[†]

AR amplification RET amplification TP53 I162N

[†] For a complete list of the genes assayed and performance specifications, please refer to the Appendix

THERAPEUTIC IMPLICATIONS

Genomic Alterations Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials
AR amplification	Abiraterone Bicalutamide Degarelix Enzalutamide Flutamide Goserelin Leuprolide Nilutamide Triptorelin	None	Yes, see clinical trials section
RET amplification	None	Cabozantinib Lenvatinib Ponatinib Regorafenib Sorafenib Sunitinib Vandetanib	Yes, see clinical trials section
TP53 I162N	None	None	None

			Tumor Type	
FOUNDATIONONE	Patient Name Tomar , R.K.	Report Date 10 June 2016	Prostate acinar adenocarcinoma	

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

GENOMIC ALTERATIONS

GENE ALTERATION

amplification

● AR

INTERPRETATION

Gene and Alteration: AR encodes the androgen receptor, a nuclear receptor that binds to testosterone and dihydroxytestosterone. AR is often amplified and overexpressed in castration-resistant prostate cancer (CRPC), also called hormone-refractory prostate cancer¹.

Frequency and Prognosis: Amplification of AR was reported in 44% of metastatic CRPC cases^{2,3}. AR amplification in prostate cancer is reported to occur in response to androgen-deprivation therapy, as studies reported that 28-30% of patients with CRPC had AR amplification after, but not before, receiving androgen-deprivation therapy^{4,5}. Studies have found AR gene amplification in 13-33% of patients with CRPC^{4,5,6,7}. AR gene amplification is associated with advanced, hormone-refractory disease, and thus with poor prognosis. A study of prostate tumors that recurred during hormone therapy found no difference in patients with or without AR amplification in histological grade, Gleason score, or tumor stage⁸. Phosphorylation of AR on serine 213 (S213) has been reported to predict poor survival, whereas phosphorylation on S308 and S791 predicts better survival in patients with prostate cancer⁹.

Potential Treatment Strategies: Several FDA-approved drugs are available that target AR and/or the AR pathway in prostate cancer, including the AR inhibitor enzalutamide, the anti-androgens flutamide and nilutamide, the luteinizing hormone-releasing hormone (LHRH) agonists leuprolide and triptorelin, and the LHRH antagonist degarelix^{10,11}. The AR inhibitor cyproterone has been approved for use in prostate cancer in Canada and the UK. One approved drug, abiraterone, as well as other candidate drugs in clinical trials, specifically target CRPC^{12,13}. The therapies bicalutamide and goserelin are also FDA approved for the treatment of prostate cancer and are currently under clinical investigation in breast carcinoma^{11,14,15}. Resistance to androgen deprivation therapy (ADT) commonly occurs in prostate cancer through mechanisms such as increased AR expression, AR activation by tyrosine kinasedependent signaling, alterations in AR co-activators, expression of truncated AR splice isoforms with constitutive activity, and extragonadal synthesis of androgenic compounds^{16,17,18,19,20}. Therapies that target AR nuclear translocation and degradation pathways are in clinical and preclinical development in prostate cancer^{21,22,23,24,25}. AR has been shown in vitro to bind to BRD4; disruption of this interaction with bromodomain and extraterminal (BET) inhibitors suppressed AR-mediated transcription and tumor growth in a preclinical model of castrate-resistant prostate cancer²⁶. AR signaling may promote radioresistance in prostate cancer by transcriptionally upregulating DNA repair genes²⁷. There is preclinical evidence that development of resistance to anti-AR therapies such as abiraterone and enzalutamide may engender cross-resistance to the taxanes docetaxel and cabazitaxel²⁸.

RET amplification

Gene and Alteration: RET (rearranged during transfection) is a receptor tyrosine kinase, primarily expressed in cells of the nervous system. It has been identified as a proto-oncogene that results in transformation of cells upon recombination with a partner gene²⁹. RET amplification has been reported in cancer³⁰, and has been associated with responses to therapies that target RET^{31,32}.

Frequency and Prognosis: Amplification or deletion of RET has been reported in 0.6-1.4% of prostate adenocarcinomas (cBioPortal, Feb 2016), although the effects of RET activation in prostate carcinoma have not been studied in detail (PubMed, Feb 2016). RET activity in prostate cancer may be indicative of small cell neuroendocrine carcinoma³³. Ret protein overexpression has been reported in both high-grade prostate intraepithelial neoplasia (PIN) and in prostate carcinomas as compared to normal prostate tissue; the authors of the study suggest that Ret may be involved with cell growth in prostate tumors³⁴.

Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

GENE ALTERATION

INTERPRETATION

Potential Treatment Strategies: Several RET inhibitors are approved by the FDA in various indications, including ponatinib, sunitinib, vandetanib, cabozantinib, lenvatinib, regorafenib, and sorafenib. Twenty three patients with RET-rearranged NSCLC treated with cabozantinib achieved 7 partial responses, 2 unconfirmed partial responses and 12 additional stable disease outcomes (Drilon et al., 2015; ASCO Abstract 8007)^{35,36,37,38} and four patients with tumors harboring RET fusions (three with lung cancer and one with papillary thyroid carcinoma) benefited from vandetanib-containing therapy^{39,40,41,42}. Additionally, a case study reported an exceptional response to sunitinib in a patient with a RET-amplified germ cell tumor³¹. Treatment of RET-amplified tongue adenocarcinoma with sorafenib resulted in disease stabilization lasting four months; additional treatment with sorafenib and sulindac provided disease stabilization for an additional three months³². Lenvatinib is FDA approved for the treatment of locally recurrent or metastatic, progressive, radioiodine-refractory differentiated thyroid cancer (DTC)⁴³ and, in combination with everolimus, for the treatment of advanced renal cell carcinoma following prior antiangiogenic therapy⁴⁴. In a Phase 2 trial, lenvatinib benefited patients with medullary thyroid carcinoma and RET mutations (6 PR, 8 SD, 1 PD), as well as those without detected RET mutations (3 PR, 2 SD, 2 PD), with a trend for higher progression-free survival for patients with RET mutations (Schlumberger et al., 2012; ASCO Abstract 5591). Preclinical studies demonstrated that cells transformed by KIF5B-RET are sensitive to treatment with vandetanib, sorafenib, ponatinib, sunitinib, cabozantinib, and lenvatinib (Gozgit et al., 2013; AACR Abstract 2084)^{35,45,46,47,48}. Additional preclinical studies reported that lung cancer cell lines containing a CCDC6-RET fusion were sensitive to vandetanib⁴⁹ and lenvatinib⁴⁸. These agents and other drugs targeting RET are in clinical trials for patients with various solid tumors (Hellerstedt, 2012; ASCO Abstract 7514).

• *TP53* I162N **Gene and Alteration:** Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers⁵⁰. Mutations affecting the DNA binding domain (aa 100-292), the tetramerization domain (aa 325-356), or the C-terminal regulatory domain (aa 356-393), such as observed here, are thought to disrupt the transactivation of p53-dependent genes and are predicted to promote tumorigenesis^{51,52,53,54}. Germline mutations in TP53 are associated with the very rare disorder Li-Fraumeni syndrome and the early onset of many cancers^{55,56,57,58,59,60}. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000⁶¹ to 1:20,000⁶⁰, and in the appropriate clinical context, germline testing of TP53 is recommended.

Frequency and Prognosis: TP53 mutations have been reported in 18-40% of prostate cancers^{62,63}. p53 expression has been reported to be significantly more common in late-stage and hormone-refractory prostate cancers and has been found to be associated with prostate-specific antigen (PSA) recurrence in low- and intermediate-grade prostate cancer⁶⁴. TP53 loss has been found to be associated with prostate cancer-specific mortality in univariate analysis⁶⁵.

Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

GENE ALTERATION

INTERPRETATION

Potential Treatment Strategies: There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor AZD1775^{66,67,68,69}, therapies that reactivate mutant p53 such as APR-246⁷⁰, or p53 gene therapy and immunotherapeutics such as SGT-5371,72,73,74 and ALT-801 (Hajdenberg et al., 2012; ASCO Abstract e15010). Combination of AZD1775 with paclitaxel and carboplatin achieved significantly longer progression-free survival than paclitaxel and carboplatin alone in patients with TP53-mutant ovarian cancer (Oza et al., 2015; ASCO Abstract 5506). Furthermore, AZD1775 in combination with carboplatin achieved a 27% (6/22) response rate and 41% (9/22) stable disease rate in patients with TP53-mutant ovarian cancer refractory or resistant to carboplatin plus paclitaxel (Leijen et al., 2015; ASCO Abstract 2507). In a Phase 1 clinical trial, 8 of 11 evaluable patients receiving SGT-53 as a single agent exhibited stable disease⁷⁵. Clinical trials of SGT-53 in combination with chemotherapy are underway. Additionally, the combination of a CHK1 inhibitor and irinotecan reportedly reduced tumor growth and prolonged survival in a TP53 mutant, but not TP53 wild-type, breast cancer xenotransplant mouse model⁷⁶. Kevetrin has also been reported to activate p53 in preclinical studies and might be relevant in the context of mutant p53 (Kumar et al., 2012; AACR Abstract 2874). Clinical trials of these agents are under way for some tumor types for patients with a TP53 mutation.

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

THERAPIES

THERAPY	SUMMARY OF DATA IN PATIENT TUMOR TYPE
Abiraterone	Approved Indications: Abiraterone is an orally available CYP17 inhibitor that is FDA approved, in combination with prednisone, in metastatic castration-resistant prostate cancer (CRPC). Abiraterone blocks the synthesis of androgen by inhibiting CYP17, an enzyme involved in androgen biosynthesis ¹² .
	Gene Association: AR activation or amplification may predict sensitivity to abiraterone.
	Supporting Data: Clinical studies have reported that abiraterone/prednisone combination treatment significantly improved survival of patients with metastatic CRPC, as compared to placebo/prednisone treatment ¹³ .
Bicalutamide	Approved Indications: Bicalutamide is an orally available AR inhibitor that is FDA approved for use, in combination with LHRH agonists, in stage D2 metastatic prostate carcinoma.
	Gene Association: AR activation or amplification may predict sensitivity to bicalutamide.
	Supporting Data: A long-term follow-up to a Phase 3 clinical trial of bicalutamide/LHRH analog combination therapy in patients with prostate carcinoma reported significant improvement in overall survival compared with LHRH analog monotherapy ⁷⁷ .
Degarelix	Approved Indications: Degarelix is an injectable LHRH antagonist that has been approved for reducing testosterone to castrate levels in hormone-sensitive prostate cancer.
	Gene Association: AR activation or amplification may predict sensitivity to degarelix.
	Supporting Data: A Phase 3 extension trial in patients with prostate cancer reported that degarelix was associated with significantly improved progression-free survival as compared with leuprolide ⁷⁸ .
Enzalutamide	Approved Indications: Enzalutamide is an androgen receptor inhibitor that is approved to treat patients with metastatic castration-resistant prostate cancer (CRPC) who have previously received docetaxel.
	Gene Association: AR activation or amplification may predict sensitivity to enzalutamide.
	Supporting Data: A clinical trial enrolling 1199 patients with metastatic CRPC who had received prior docetaxel showed a statistically significant improvement in overall survival (18.4 and 13.6 months in the enzalutamide and placebo arms, respectively) ⁷⁹ .
Flutamide	Approved Indications: Flutamide is an orally available anti-androgen that is FDA approved for use, in combination with LHRH agonists, in stage B2-C and stage D2 metastatic prostate carcinoma.
	Gene Association: AR activation or amplification may predict sensitivity to flutamide.
	Supporting Data: A Phase 2 clinical trial of the combination of suramin, leuprolide, and flutamide in previously untreated patients with metastatic prostate cancer reported an overall response rate of 67%, including three complete responses and 30 partial responses ⁸⁰ . A ten-year follow-up to a Phase 3 clinical trial in patients with prostate carcinoma reported that long-term androgen-deprivation therapy (flutamide/goserelin) with radiation conferred significant benefit compared with short-term androgen-deprivation therapy with radiation ⁸¹ .

Patient Name Tomar , R.K. Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

Goserelin	Approved Indications: Goserelin is a luteinizing hormone-releasing hormone analog that is FDA approved for use with flutamide in locally confined Stage B2-C prostate carcinoma, and for the palliative treatment of advanced prostate carcinoma and of advanced breast cancer in pre- and perimenopausal women.
	Gene Association: AR activation or amplification may predict sensitivity to goserelin.
	Supporting Data: A ten-year follow-up to a Phase 3 clinical trial in patients with prostate carcinoma reported that long-term androgen-deprivation therapy (flutamide/goserelin) with radiation conferred significant benefit compared with short-term androgen-deprivation therapy with radiation ⁸¹ .
Leuprolide	Approved Indications: Leuprolide is an injectable LHRH analog that is FDA approved for use in the palliative treatment of advanced prostate carcinoma.
	Gene Association: AR activation or amplification may predict sensitivity to leuprolide.
	Supporting Data: A Phase 2 clinical trial of the combination of suramin, leuprolide, and flutamide in previously untreated patients with metastatic prostate cancer reported an overall response rate of 67%, including three complete responses and 30 partial responses ⁸⁰ . A Phase 3 clinical trial reported that leuprolide administration was effective at lowering testosterone concentration to castrate levels in patients with prostate cancer ⁸² .
Nilutamide	Approved Indications: Nilutamide is an orally available anti-androgen that is FDA approved for use, in combination with surgical castration, in stage D2 metastatic prostate carcinoma.
	Gene Association: AR activation or amplification may predict sensitivity to nilutamide.
	Supporting Data: A study in patients with androgen-independent prostate cancer reported a decrease in PSA levels in 40% of patients receiving nilutamide ⁸³ . Another Phase 2 study in patients with advanced prostate cancer who failed androgen ablation therapy reported initial and sustained (greater than three months) PSA responses in 64% and 29% of patients, respectively ⁸⁴ .
Triptorelin	Approved Indications: Triptorelin is an injectable LHRH analog that is FDA approved for use in the palliative treatment of advanced prostate carcinoma.
	Gene Association: AR activation or amplification may predict sensitivity to triptorelin.
	Supporting Data: A Phase 3 clinical trial reported that triptorelin administration was effective at lowering testosterone concentration to castration levels in patients with prostate cancer ⁸⁵ .

THERAPY	SUMMARY OF DATA IN OTHER TUMOR TYPE
Cabozantinib	Approved Indications: Cabozantinib inhibits multiple tyrosine kinases, including MET, RET, VEGFRs, and ROS1. It is FDA approved to treat advanced renal cell carcinoma (RCC), after prior anti-angiogenic therapy, and progressive, metastatic medullary thyroid cancer (MTC).
	Gene Association: RET amplification may predict sensitivity to cabozantinib.
	Supporting Data: Phase 2 studies of cabozantinib in patients with metastatic castration-resistant prostate cancer reported clinically meaningful activity and reduced morbidity, with an objective response rate of 5% and stable disease in 75% of patients. Median progression-free survival was 24 weeks with cabozantinib and 6 weeks with placebo, the median overall survival was 11 months in the expansion cohorts ^{86,87} .

For more comprehensive information please log on to the Interactive Cancer Explorer™ To set up your Interactive Cancer Explorer account, contact your sales representative or call (888) 988-3639.

Electronically Signed by Jo-Anne Vergilio, M.D. | Jeffrey S. Ross, M.D., Medical Director | CLIA Number: 22D2027531 | 10 June 2016 Foundation Medicine, Inc., 150 2nd Street, 1st Floor, Cambridge, MA 02141 | 1.888.988.3639

FOUNDAT		Patient Name Tomar , R.K.	Report Date 10 June 2016	Tumor Type Prostate acinar adenocarcinoma
Lenvatinib	and KIT. It is FDA ap differentiated thyro	ns: Lenvatinib targets several proved to treat locally recurr id cancer and, in combinatior following prior antiangiogen	ent or metastatic, rad with everolimus, for	-
	through this recepto medullary thyroid ca detected RET mutat	arcinoma and RET mutations	to lenvatinib ^{48,88} . Len (6 PR, 8 SD, 1 PD), as trend for higher prog	vatinib benefited patients with well as patients without gression-free survival (PFS) in
	differentiated thyro dose-escalation stud partial response (PR of patients; stable d combination of lenv tumors, resulted in I patients experience medullary thyroid ca RET mutations (3 PR (Schlumberger et al.	id carcinoma ⁴³ or for patients dy of single-agent lenvatinib f s) were achieved by 16% (12, isease (SD) was achieved by k atinib and golvatinib, in a Pha PRs for 5/14 of patients, inclu d SD (Kwak et al., 2014; ANE	with advanced renal or patients with adva (77) and unconfirmed ooth of the participan ase 1b trial for the tre ding 2 with prostate of Abstract 484). Lenvati (6 PR, 8 SD, 1 PD) as w higher PFS for patien 2 patients with MTC	cancer; an additional 13/24 nib benefited patients with vell as patients without detected its with RET mutations
Ponatinib	PDGFRs, VEGFRs, FG advanced, T315I-mu (Ph+) acute lymphol	ns: Ponatinib is a multikinase FRs, and other tyrosine kinas Itated chronic myeloid leuker olastic leukemia (ALL), as wel e inhibitor is indicated.	es. It is FDA approved nia (CML) and Philade	l for the treatment of Iphia chromosome-positive
	RET kinase, both poi	onatinib has been shown to int mutations and fusions, in (Gozgit et al., 2013; AACR ab	preclinical studies of i	xpression or activated forms of medullary thyroid carcinoma
	(PubMed, Feb 2016) gastric, breast, lung,	onatinib has not been extensi). Ponatinib has shown efficad , colon, and medullary thyroid cluding NSCLC (Gozgit et al., 2	cy in preclinical mode d carcinomas, and is b	s of endometrial, bladder, eing clinically tested in some
Regorafenib	VEGFRs, PDGFRs, KI colorectal cancer (Cl	ns: Regorafenib is a small-mo T, and RAF family proteins ⁹⁴ . RC) or advanced gastrointest	t is FDA approved for nal stromal tumors (C	the treatment of metastatic GIST) ^{95,96,97} .
	Supporting Data: Reare limited for other progression-free sur placebo ^{95,96} . A Phase responses in patient in 17 patients with r than 12 weeks in 4 (r tumor types. Regorafenib in rvival in patients with imatinil e 1 trial of regorafenib in 47 p as with CRC, renal cell carcino refractory non-small cell lung	studied as a treatmen proved overall surviv o/sunitinib-refractory atients with solid tun ma, or osteosarcoma cancer (NSCLC) repor LO; ASCO Abstract 758	nt for CRC and GIST, and data al in patients with CRC and GIST as compared with

Patient Name Tomar , R.K. Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

Sorafenib	Approved Indications: Sorafenib is a kinase inhibitor that targets the RAF kinases, KIT, FLT3, RET, VEGFRs, and PDGFRs. It is FDA approved for the treatment of unresectable hepatocellular carcinoma, advanced renal cell carcinoma, and recurrent or metastatic differentiated thyroid carcinoma.
	Gene Association: Kinase inhibitors targeting RET, such as sorafenib, may be relevant in a tumor harboring RET amplification.
	Supporting Data: Sorafenib is under clinical investigation in multiple tumor types. Results of five Phase 2 clinical trials of sorafenib in patients with hormone-refractory prostate cancer reported a relatively short progression-free survival, but outcomes in terms of overall survival and quality of life were promising (Zaborowska et al. 2012; 22852011). A Phase 1 study of imatinib in combination with sorafenib in patients with refractory castration-resistant prostate cancer reported no biochemical responses but stable disease in two patients ¹⁰⁰ . A Phase 2 study of sorafenib and bicalutamide in 39 patients with castration-resistant prostate cancer (CRPC) observed a PSA response or stable disease lasting 6 months or longer in 47% (18/39) of cases ¹⁰¹ . Another Phase 2 study of single agent sorafenib as second-line treatment for CRPC reported moderate activity (3.7 months progression free survival and 18.0 months overall survival) ¹⁰² .
Sunitinib	Approved Indications: Sunitinib is a small-molecule tyrosine kinase inhibitor that targets PDGFRs, VEGFRs, KIT, FLT3, CSF-1R, and RET. It is FDA approved for the treatment of advanced renal cell carcinoma, advanced or metastatic pancreatic neuroendocrine tumors, and gastrointestinal stromal tumors (GIST) after progression on imatinib.
	Gene Association: Amplification of RET may predict sensitivity to tyrosine kinase inhibitors such as sunitinib. In one study, a patient with metastatic germ cell tumor harboring a RET amplification had a response to sunitinib ³¹ .
	Supporting Data: A Phase 2 study of sunitinib in metastatic castration-resistant prostate cancer reported one partial response and two PSA responses. Among 25 patients with baseline bone metastases, five partial and one complete bone scan responses were recorded ¹⁰³ . In a Phase 1/2 trial of sunitinib and stereotactic body radiation therapy in patients with various metastatic solid tumors, patients with kidney and prostate primary tumors had significantly improved overall survival ¹⁰⁴ . A Phase 1 study of sunitinib in combination with androgen deprivation therapy and external-beam intensity modulated radiation therapy in men with localized high-risk prostate cancer showed toxicity at initial doses of sunitinib, but the combination was deemed feasible at lower doses ¹⁰⁵ .
Vandetanib	Approved Indications: Vandetanib is a multikinase inhibitor that targets RET, VEGFRs, SRC family kinases, and EGFR. It is FDA approved for the treatment of medullary thyroid cancer (MTC).
	Gene Association: Kinase inhibitors targeting RET, such as vandetanib, may be relevant in a tumor harboring RET amplification ⁹¹ .
	Supporting Data: A Phase 2 study of vandetanib in combination with docetaxel and prednisolone in 86 patients with metastatic hormone-refractory prostate cancer reported that the vandetinib group had fewer PSA responses and more progression events compared to placebo plus docetaxel and prednisolone ¹⁰⁶ . In preclinical studies, vandetinib inhibited growth of several xenograft tumors, including prostate tumors ¹⁰⁷ .

Genomic alterations detected may be associated with activity of certain approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type.

Patient Name Tomar , R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

CLINICAL TRIALS TO CONSIDER

IMPORTANT: While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or research staff. This is not meant to be a complete list of available trials. In order to conduct a more thorough search, please go to www.clinicaltrials.gov and use the search terms provided below. For more information about a specific clinical trial, type the NCT ID of the trial indicated below into the search bar.

GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

Tumors with AR amplification or activation may be responsive to therapies that inhibit the androgen receptor.

 AR Exar amplification ider

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinicaltrials.gov using keyword terms such as "AR", "abiraterone", "bicalutamide", "degarelix", "enzalutamide", "flutamide", "goserelin", "leuprolide", "nilutamide", "triptorelin", "ARN-509", "EPI-506", "prostate carcinoma", "solid tumor", and/or "advanced cancer".

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
The Role of Highly Selective Androgen Receptor	Phase	AR	Arizona, California, Illinois,	NCT01790126
(AR) Targeted Therapy in Men With Biochemically Relapsed Hormone Sensitive	1/Phase 2		Oregon, Washington	
Prostate Cancer	2			
Phase II Trial of Enzalutamide for Castrate-	Phase 2	AR	Massachusetts, Washington	NCT01942837
resistant Prostate Cancer (CRPC) With			_	
Correlative Assessment of Androgen Receptor				
(AR) Signaling and Whole-exome and				
Transcriptome Sequencing			-	
Phase 1b Study of ARN 509 Plus Everolimus in	Phase 1	AR, mTOR	New York	NCT02106507
Men With Progressive Metastatic Castration-				
Resistant Prostate Cancer After Treatment With				
Abiraterone Acetate			-	
Addition of Pembrolizumab Upon Progression	Phase 2	PD-1, AR	Maryland, Oregon	NCT02312557
on Enzalutamide in Men With mCRPC				
A Phase 1/2 Open-Label Study to Assess the	Phase	AR	Arizona, Michigan,	NCT02606123
Safety, Pharmacokinetics, and Anti-Tumor	1/Phase		Washington, British Columbia	
Activity of Oral EPI-506 in Patients With	2		(Canada)	
Metastatic Castration-Resistant Prostate				
Cancer				

Patient Name Tomar , R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

CLINICAL TRIALS TO CONSIDER (cont.)

GENE

RATIONALE FOR POTENTIAL CLINICAL TRIALS

RET amplification, as well as RET activating mutations and fusions, may confer sensitivity to kinase inhibitors targeting RET.

• RET

amplification

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinicaltrials.gov using keyword terms such as "RET", "vandetanib", "sorafenib", "sunitinib", "ponatinib", "regorafenib", "cabozantinib", "lenvatinib", "XL184", "prostate carcinoma", "solid tumor", and/or "advanced cancer".

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
A Phase I Trial of Riluzole and Sorafenib in Patients With Advanced Solid Tumors and	Phase 1	FLT3, KIT, PDGFRs, RAFs,	New Jersey	NCT01303341
Melanoma		RET, VEGFRs, CSF1R		
Phase II Randomized Study of Docetaxel With or Without Low-dose, Short Course Sunitinib in the Treatment of Advanced Solid Tumors	Phase 2	VEGFRs, PDGFRs, KIT, FLT3, CSF1R, RET	Singapore (Singapore)	NCT01803503
A Phase I Study To Evaluate The Safety, Pharmacokinetics And Pharmacodynamics Of Escalating Doses Of A Vaccine-based Immunotherapy Regimen (Vbir) For Prostate Cancer (Pf-06753512)	Phase 1	CTLA-4, CSF- 1R, FLT3, KIT, RET, PDGFRs, VEGFRs	Nebraska, Nevada, New York, Washington	NCT02616185
Phase II Study of Ponatinib for Advanced Cancers With Genomic Alterations in Fibroblastic Growth Factor Receptor (FGFR) and Other Genomic Targets (KIT, PDGFRá, RET FLT3, ABL1)	Phase 2	BCR-ABL, RET, KIT, FLT-3, PDGFRs, VEGFRs, FGFRs	Michigan, Ohio	NCT02272998

Patient Name Tomar , R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations make their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ABL2	<i>ALK</i>	ATM	CDC73	DDR2	<i>DICER1</i>
amplification	R209C	L2890I	amplification	amplification	S295C
<i>FANCE</i>	<i>FGFR2</i>	HSD3B1	LYN	<i>MCL1</i>	<i>MLL2</i>
P18S	E146G	amplification	amplification	amplification	G4373S
NOTCH2	PARK2	PDGFRA	PREX2 amplification	PRKDC	RAD50
amplification	M1T,R334C	R979H		amplification	R884H
RUNX1T1 amplification	<i>SETD2</i> T1033A	<i>TOP2A</i> R1218K			

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

GENES ASSAYED IN FOUNDATIONONE

FoundationOne is designed to include all genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 315 genes as well as introns of 28 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy	Number Alterations
DNA Gene List. Little County Sequence for the Detection of base Substitutions, insertion, Detections, and Copy	Number Alterations

					··· ·				
ABL1	ABL2	ACVR1B	AKT1	AKT2	АКТЗ	ALK	AMER1 (FAM123B)	APC	AR
ARAF	ARFRP1	ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA
AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6	BCOR
BCORL1	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	ВТК	C11orf30 (EMSY)
CARD11	CBFB	CBL	CCND1	CCND2	CCND3	CCNE1	CD274	CD79A	CD79B
CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B
CDKN2C	CEBPA	CHD2	CHD4	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2
CSF1R	CTCF	CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR2	DICER1	DNMT3A
DOT1L	EGFR	EP300	ЕРНАЗ	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4
ERG	ERRFI1	ESR1	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE	FANCF
FANCG	FANCL	FAS	FAT1	FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3
FLT4	FOXL2	FOXP1	FRS2	FUBP1	GABRA6	GATA1	GATA2	GATA3	GATA4
GATA6	GID4 (C17orf39)	GL/1	GNA11	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GRM3
GSK3B	H3F3A	HGF	HNF1A	HRAS	HSD3B1	HSP90AA1	IDH1	IDH2	IGF1R
IGF2	IKBKE	IKZF1	IL7R	INHBA	INPP4B	IRF2	IRF4	IRS2	JAK1
JAK2	JAK3	JUN	KAT6A (MYST3)	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL
KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LMO1	LRP1B	LYN	LZTR1
MAGI2	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MCL1	MDM2	MDM4	MED12	MEF2B
MEN1	MET	MITF	MLH1	MPL	MRE11A	MSH2	MSH6	MTOR	МИТҮН
МҮС	MYCL (MYCL1)	MYCN	MYD88	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1
NOTCH2	<i>NOTCH3</i>	NPM1	NRAS	NSD1	NTRK1	NTRK2	NTRK3	NUP93	РАКЗ
PALB2	PARK2	PAX5	PBRM1	PDCD1LG2	PDGFRA	PDGFRB	PDK1	РІКЗС2В	РІКЗСА
РІКЗСВ	PIK3CG	PIK3R1	PIK3R2	PLCG2	PMS2	POLD1	POLE	PPP2R1A	PRDM1
PREX2	PRKAR1A	PRKCI	PRKDC	PRSS8	PTCH1	PTEN	PTPN11	QKI	RAC1
RAD50	RAD51	RAF1	RANBP2	RARA	RB1	RBM10	RET	RICTOR	RNF43
ROS1	RPTOR	RUNX1	RUNX1T1	SDHA	SDHB	SDHC	SDHD	SETD2	SF3B1
SLIT2	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1	SOX10
SOX2	SOX9	SPEN	SPOP	SPTA1	SRC	STAG2	STAT3	STAT4	STK11
SUFU	SYK	TAF1	TBX3	TERC	TERT (promoter only)	TET2	TGFBR2	TNFAIP3	TNFRSF14
TOP1	TOP2A	TP53	TSC1	TSC2	TSHR	U2AF1	VEGFA	VHL	WISP3
WT1	XPO1	ZBTB2	ZNF217	ZNF703					
DNA Gene List: I	For the Detection	Select Rearrang	ements						
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	BRD4	EGFR	ETV1	ETV4
ETV5	ETV6	FGFR1	FGFR2	FGFR3	KIT	MSH2	МҮВ	МҮС	NOTCH2
NTRK1	NTRK2	PDGFRA	RAF1	RARA	RET	ROS1	TMPRSS2		

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

FOUNDATIONONE PERFORMANCE SPECIFICATIONS

ACCURACY							
Sensitivity: Base Substitutions	At Mutant Allele Frequency ≥10%	>99.9% (CI* 99.6%-100%)					
Sensitivity. Dase Substitutions	At Mutant Allele Frequency 5-10%	99.3% (CI* 98.3%-99.8%)					
Sensitivity: Insertions/Deletions (1-40 bp)	At Mutant Allele Frequency ≥20%	97.9% (CI* 92.5%-99.7%)					
Sensitivity. Insertions/Deletions (1-40 bb)	At Mutant Allele Frequency 10-20%	97.3% (CI* 90.5%-99.7%)					
Sensitivity: Copy Number Alterations—Amplifications	At ≥30% tumor nuclei	>99.0% (CI* 93.6%-100%)					
(ploidy <4, Amplification with Copy Number \geq 8)	At 20% tumor nuclei	92.6% (CI* 66.1%-99.8%)					
Sensitivity: Copy Number Alterations—Deletions	At ≥30% tumor nuclei	97.2% (CI* 85.5%-99.9%)					
(ploidy <4, Homozygous Deletions)	At 20% tumor nuclei	88.9% (CI* 51.8%-99.7%)					
Sensitivity: Rearrangements (selected rearrangements in spec	vity: Rearrangements (selected rearrangements in specimens with ≥20% tumor nuclei)**						
Specificity of all variant types	Positive Predictive Value (PPV)	>99.0%					
REPRODUCIBILITY (average concordance between replicates)	RODUCIBILITY (average concordance between replicates)						

*95% Confidence Interval

** Performance for gene fusions within targeted introns only. Sensitivity for gene fusions occurring outside targeted introns or in highly repetitive intronic sequence contexts is reduced.

¹Based on analysis of coverage and re-arrangement structure in the COSMIC database for the solid tumor fusion genes where alteration prevalence could be established, complemented by detection of exemplar rearrangements in cell line titration experiments.

² Based on ALK re-arrangement concordance analysis vs. a standard clinical FISH assay described in: Yelensky, R. et al. Analytical validation of solid tumor fusion gene detection in a comprehensive NGS-based clinical cancer genomic test, In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; 2014. Abstract nr 4699

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

For additional information specific to the performance of this specimen, please contact Foundation Medicine, Inc. at 1-888-988-3639.

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ¹ Niraula S, Chi K, Joshua AM (2012) Beyond castration-defining future directions in the hormonal treatment of prostate cancer. Horm Cancer 3(1-2):3-13.
- ² Grasso CS, Wu YM, Robinson DR, et al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487(7406):239-43.
- ³ Taylor BS, Schultz N, Hieronymus H, et al. (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18(1):11-22.
- ⁴ Visakorpi T, Hyytinen E, Koivisto P, et al. (1995) In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9(4):401-6.
- ⁵ Koivisto P, Kononen J, Palmberg C, et al. (1997) Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 57(2):314-9.
- ⁶ Palmberg C, Koivisto P, Kakkola L, et al. (2000) Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J Urol 164(6):1992-5.
- ⁷ Haapala K, Kuukasjärvi T, Hyytinen E, et al. (2007) Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol 38(3):474-8.
- ⁸ Koivisto PA, Helin HJ (1999) Androgen receptor gene amplification increases tissue PSA protein expression in hormone-refractory prostate carcinoma. J Pathol 189(2):219-23.
- ⁹ McCall P, Adams CE, Willder JM, et al. (2013) Androgen receptor phosphorylation at serine 308 and serine 791 predicts enhanced survival in castrate resistant prostate cancer patients. Int J Mol Sci 14(8):16656-71.
- ¹⁰ Patel JC, Maughan BL, Agarwal AM, et al. (2013) Emerging molecularly targeted therapies in castration refractory prostate cancer. Prostate Cancer 2013:981684.
- ¹¹ Chowdhury S, Kirby R (2013) Advances in the treatment of metastatic prostate cancer. Practitioner 257(1760):15-8, 2.
- ¹² Soifer HS, Souleimanian N, Wu S, et al. (2012) Direct regulation of androgen receptor activity by potent CYP17 inhibitors in prostate cancer cells. J Biol Chem 287(6):3777-87.
- ¹³ Sartor O (2011) Combination therapy: Abiraterone prolongs survival in metastatic prostate cancer. Nat Rev Clin Oncol 8(9):515-6.
- ¹⁴ Gucalp A, Tolaney S, Isakoff SJ, et al. (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res 19(19):5505-12.
- ¹⁵ Wu S, Li Q, Zhu Y, et al. (2013) Role of goserelin in combination with endocrine therapy for the treatment of advanced breast cancer in premenopausal women positive for hormone receptor: a retrospective matched case-control study. Cancer Biother Radiopharm 28(10):697-702.
- ¹⁶ Sharifi N (2013) Mechanisms of androgen receptor activation in castration-resistant prostate cancer. Endocrinology 154(11):4010-7.
- ¹⁷ van der Steen T, Tindall DJ, Huang H (2013) Posttranslational modification of the androgen receptor in prostate cancer. Int J Mol Sci 14(7):14833-59.
- ¹⁸ Lee E, Madar A, David G, et al. (2013) Inhibition of androgen receptor and β-catenin activity in prostate cancer. Proc Natl Acad Sci USA 110(39):15710-5.

Patient Name Tomar, R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ¹⁹ Gowda PS, Deng JD, Mishra S, et al. (2013) Inhibition of hedgehog and androgen receptor signaling pathways produced synergistic suppression of castration-resistant prostate cancer progression. Mol Cancer Res 11(11):1448-61.
- ²⁰ Liu LL, Xie N, Sun S, et al. (2013) Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene ePub Jul 2013.
- ²¹ Loddick SA, Ross SJ, Thomason AG, et al. (2013) AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol Cancer Ther 12(9):1715-27.
- ²² Rathkopf DE, Morris MJ, Fox JJ, et al. (2013) Phase I study of ARN-509, a novel antiandrogen, in the treatment of castrationresistant prostate cancer. J Clin Oncol 31(28):3525-30.
- ²³ Soh SF, Huang CK, Lee SO, et al. (2014) Determination of androgen receptor degradation enhancer ASC-J9([®]) in mouse sera and organs with liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 88:117-22.
- ²⁴ Bianchini D, Omlin A, Pezaro C, et al. (2013) First-in-human Phase I study of EZN-4176, a locked nucleic acid antisense oligonucleotide to exon 4 of the androgen receptor mRNA in patients with castration-resistant prostate cancer. Br J Cancer 109(10):2579-86.
- ²⁵ Li H, Hassona MD, Lack NA, et al. (2013) Characterization of a new class of androgen receptor antagonists with potential therapeutic application in advanced prostate cancer. Mol Cancer Ther 12(11):2425-35.
- ²⁶ Asangani IA, Dommeti VL, Wang X, et al. (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510(7504):278-82.
- ²⁷ Bartek J, Mistrik M, Bartkova J (2013) Androgen receptor signaling fuels DNA repair and radioresistance in prostate cancer. Cancer Discov 3(11):1222-4.
- ²⁸ van Soest RJ, van Royen ME, de Morrée ES, et al. (2013) Cross-resistance between taxanes and new hormonal agents abiraterone and enzalutamide may affect drug sequence choices in metastatic castration-resistant prostate cancer. Eur J Cancer 49(18):3821-30.
- ²⁹ Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42(2):581-8.
- ³⁰ Gao J, Aksoy BA, Dogrusoz U, et al. (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1.
- ³¹ Subbiah V, Meric-Bernstam F, Mills GB, et al. (2014) Next generation sequencing analysis of platinum refractory advanced germ cell tumor sensitive to Sunitinib (Sutent[®]) a VEGFR2/PDGFRβ/c-kit/ FLT3/RET/CSF1R inhibitor in a phase II trial. J Hematol Oncol 7:52.
- ³² Jones SJ, Laskin J, Li YY, et al. (2010) Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol 11(8):R82.
- ³³ Drake JM, Graham NA, Lee JK, et al. (2013) Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc Natl Acad Sci USA 110(49):E4762-9.
- ³⁴ Dawson DM, Lawrence EG, MacLennan GT, et al. (1998) Altered expression of RET proto-oncogene product in prostatic intraepithelial neoplasia and prostate cancer. J Natl Cancer Inst 90(7):519-23.
- ³⁵ Drilon A, Wang L, Hasanovic A, et al. (2013) Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3(6):630-5.

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ³⁶ Drilon A, Wang L, Arcila ME, et al. (2015) Broad, hybrid capture-based next-generation sequencing identifies actionable genomic alterations in "driver-negative" lung adenocarcinomas. Clin Cancer Res ePub Jan 2015.
- ³⁷ Mukhopadhyay S, Pennell NA, Ali SM, et al. (2014) RET-Rearranged Lung Adenocarcinomas with Lymphangitic Spread, Psammoma Bodies, and Clinical Responses to Cabozantinib. J Thorac Oncol 9(11):1714-1719.
- ³⁸ Michels S, Scheel AH, Scheffler M, et al. (2016) Clinicopathological Characteristics of RET Rearranged Lung Cancer in European Patients. J Thorac Oncol 11(1):122-7.
- ³⁹ Cohen PR (2015) Metastatic papillary thyroid carcinoma to the nose: report and review of cutaneous metastases of papillary thyroid cancer. Dermatol Pract Concept 5(4):7-11.
- ⁴⁰ Falchook GS, Ordóñez NG, Bastida CC, et al. (2014) Effect of the RET Inhibitor Vandetanib in a Patient With RET Fusion-Positive Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol ePub Nov 2014.
- ⁴¹ Subbiah V, Berry J, Roxas M, et al. (2015) Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer 89(1):76-9.
- ⁴² Gautschi O, Zander T, Keller FA, et al. (2013) A patient with lung adenocarcinoma and RET fusion treated with vandetanib. J Thorac Oncol 8(5):e43-4.
- ⁴³ Schlumberger M, Tahara M, Wirth LJ, et al. (2015) Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 372(7):621-30.
- ⁴⁴ Motzer RJ, Hutson TE, Glen H, et al. (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16(15):1473-82.
- ⁴⁵ Lipson D, Capelletti M, Yelensky R, et al. (2012) Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 18(3):382-4.
- ⁴⁶ Takeuchi K, Soda M, Togashi Y, et al. (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18(3):378-81.
- ⁴⁷ Kohno T, Ichikawa H, Totoki Y, et al. (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18(3):375-7.
- ⁴⁸ Okamoto K, Kodama K, Takase K, et al. (2013) Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett 340(1):97-103.
- ⁴⁹ Matsubara D, Kanai Y, Ishikawa S, et al. (2012) Identification of CCDC6-RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J Thorac Oncol 7(12):1872-6.
- ⁵⁰ Brown CJ, Lain S, Verma CS, et al. (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9(12):862-73.
- ⁵¹ Kato S, Han SY, Liu W, et al. (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100(14):8424-9.
- ⁵² Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557-82.
- ⁵³ Kamada R, Nomura T, Anderson CW, et al. (2011) Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286(1):252-8.
- ⁵⁴ Kim H, Kim K, Choi J, et al. (2012) p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol 415(5):843-54.

Patient Name Tomar, R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ⁵⁵ Bougeard G, Renaux-Petel M, Flaman JM, et al. (2015) Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 33(21):2345-52.
- ⁵⁶ Sorrell AD, Espenschied CR, Culver JO, et al. (2013) Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome : current status of clinical applications and future directions. Mol Diagn Ther 17(1):31-47.
- ⁵⁷ Nichols KE, Malkin D, Garber JE, et al. (2001) Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 10(2):83-7.
- ⁵⁸ Taubert H, Meye A, Würl P (1998) Soft tissue sarcomas and p53 mutations. Mol Med 4(6):365-72.
- ⁵⁹ Kleihues P, Schäuble B, zur Hausen A, et al. (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150(1):1-13.
- ⁶⁰ Gonzalez KD, Noltner KA, Buzin CH, et al. (2009) Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250-6.
- ⁶¹ Lalloo F, Varley J, Ellis D, et al. (2003) Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361(9363):1101-2.
- ⁶² Kumar A, White TA, MacKenzie AP, et al. (2011) Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA 108(41):17087-92.
- ⁶³ Beltran H, Yelensky R, Frampton GM, et al. (2013) Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol 63(5):920-6.
- ⁶⁴ Schlomm T, Iwers L, Kirstein P, et al. (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21(11):1371-8.
- ⁶⁵ Liu W, Xie CC, Thomas CY, et al. (2013) Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer 119(13):2405-12.
- ⁶⁶ Hirai H, Arai T, Okada M, et al. (2010) MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNAdamaging agents, including 5-fluorouracil. Cancer Biol Ther 9(7):514-22.
- ⁶⁷ Bridges KA, Hirai H, Buser CA, et al. (2011) MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17(17):5638-48.
- ⁶⁸ Rajeshkumar NV, De Oliveira E, Ottenhof N, et al. (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17(9):2799-806.
- ⁶⁹ Osman AA, Monroe MM, Ortega Alves MV, et al. (2015) Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol Cancer Ther 14(2):608-19.
- ⁷⁰ Lehmann S, Bykov VJ, Ali D, et al. (2012) Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30(29):3633-9.
- ⁷¹ Xu L, Huang CC, Huang W, et al. (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFvimmunoliposomes. Mol Cancer Ther 1(5):337-46.
- ⁷² Xu L, Tang WH, Huang CC, et al. (2001) Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 7(10):723-34.

Patient Name Tomar, R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ⁷³ Camp ER, Wang C, Little EC, et al. (2013) Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther 20(4):222-8.
- ⁷⁴ Kim SS, Rait A, Kim E, et al. (2015) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11(2):301-11.
- ⁷⁵ Senzer N, Nemunaitis J, Nemunaitis D, et al. (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096-103.
- ⁷⁶ Ma CX, Cai S, Li S, et al. (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 122(4):1541-52.
- ⁷⁷ Akaza H, Hinotsu S, Usami M, et al. (2009) Combined androgen blockade with bicalutamide for advanced prostate cancer: long-term follow-up of a phase 3, double-blind, randomized study for survival. Cancer 115(15):3437-45.
- ⁷⁸ Crawford ED, Tombal B, Miller K, et al. (2011) A phase III extension trial with a 1-arm crossover from leuprolide to degarelix: comparison of gonadotropin-releasing hormone agonist and antagonist effect on prostate cancer. J Urol 186(3):889-97.
- ⁷⁹ Scher HI, Fizazi K, Saad F, et al. (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367(13):1187-97.
- ⁸⁰ Dawson NA, Figg WD, Cooper MR, et al. (1997) Phase II trial of suramin, leuprolide, and flutamide in previously untreated metastatic prostate cancer. J Clin Oncol 15(4):1470-7.
- ⁸¹ Horwitz EM, Bae K, Hanks GE, et al. (2008) Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 26(15):2497-504.
- ⁸² Marberger M, Kaisary AV, Shore ND, et al. (2010) Effectiveness, pharmacokinetics, and safety of a new sustained-release leuprolide acetate 3.75-mg depot formulation for testosterone suppression in patients with prostate cancer: a Phase III, openlabel, international multicenter study. Clin Ther 32(4):744-57.
- ⁸³ Nakabayashi M, Regan MM, Lifsey D, et al. (2005) Efficacy of nilutamide as secondary hormonal therapy in androgenindependent prostate cancer. BJU Int 96(6):783-6.
- ⁸⁴ Kassouf W, Tanguay S, Aprikian AG (2003) Nilutamide as second line hormone therapy for prostate cancer after androgen ablation fails. J Urol 169(5):1742-4.
- ⁸⁵ Lundström EA, Rencken RK, van Wyk JH, et al. (2009) Triptorelin 6-month formulation in the management of patients with locally advanced and metastatic prostate cancer: an open-label, non-comparative, multicentre, phase III study. Clin Drug Investig 29(12):757-65.
- ⁸⁶ Smith DC, Smith MR, Sweeney C, et al. (2013) Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol 31(4):412-9.
- ⁸⁷ Smith MR, Sweeney CJ, Corn PG, et al. (2014) Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J Clin Oncol 32(30):3391-9.
- ⁸⁸ Tohyama O, Matsui J, Kodama K, et al. (2014) Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res 2014:638747.
- ⁸⁹ Hong D, Kurzrock R, Wheler JJ, et al. (2015) Phase I dose-escalation study of the multikinase inhibitor lenvatinib in patients with advanced solid tumors and in an expanded cohort of patients with melanoma. Clin Cancer Res ePub Jul 2015.

Patient Name Tomar, R.K. Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

- ⁹⁰ Schlumberger M, Jarzab B, Cabanillas ME, et al. (2016) A Phase II Trial of the Multitargeted Tyrosine Kinase Inhibitor Lenvatinib (E7080) in Advanced Medullary Thyroid Cancer. Clin Cancer Res 22(1):44-53.
- ⁹¹ Dabir S, Babakoohi S, Kluge A, et al. (2014) RET mutation and expression in small-cell lung cancer. J Thorac Oncol 9(9):1316-23.
- ⁹² De Falco V, Buonocore P, Muthu M, et al. (2013) Ponatinib (AP24534) is a novel potent inhibitor of oncogenic RET mutants associated with thyroid cancer. J Clin Endocrinol Metab 98(5):E811-9.
- ⁹³ Gozgit JM, Wong MJ, Moran L, et al. (2012) Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. Mol Cancer Ther 11(3):690-9.
- ⁹⁴ Wilhelm SM, Dumas J, Adnane L, et al. (2011) Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 129(1):245-55.
- ⁹⁵ Grothey A, Van Cutsem E, Sobrero A, et al. (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303-12.
- ⁹⁶ Demetri GD, Reichardt P, Kang YK, et al. (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295-302.
- ⁹⁷ Aprile G, Macerelli M, Giuliani F (2013) Regorafenib for gastrointestinal malignancies : from preclinical data to clinical results of a novel multi-target inhibitor. BioDrugs 27(3):213-24.
- ⁹⁸ Mross K, Frost A, Steinbild S, et al. (2012) A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 18(9):2658-67.
- ⁹⁹ Adenis A, Kotecki N, Decanter G, et al. (2013) Regorafenib use as a possible cause of intestinal perforation. Acta Oncol 52(8):1789-90.
- ¹⁰⁰Nabhan C, Villines D, Valdez TV, et al. (2012) Phase I study investigating the safety and feasibility of combining imatinib mesylate (Gleevec) with sorafenib in patients with refractory castration-resistant prostate cancer. Br J Cancer 107(4):592-7.
- ¹⁰¹Beardsley EK, Hotte SJ, North S, et al. (2012) A phase II study of sorafenib in combination with bicalutamide in patients with chemotherapy-naive castration resistant prostate cancer. Invest New Drugs 30(4):1652-9.
- ¹⁰² Aragon-Ching JB, Jain L, Gulley JL, et al. (2009) Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int 103(12):1636-40.
- ¹⁰³Saylor PJ, Mahmood U, Kunawudhi A, et al. (2012) Multitargeted tyrosine kinase inhibition produces discordant changes between 99mTc-MDP bone scans and other disease biomarkers: analysis of a phase II study of sunitinib for metastatic castration-resistant prostate cancer. J Nucl Med 53(11):1670-5.
- ¹⁰⁴Kao J, Chen CT, Tong CC, et al. (2013) Concurrent sunitinib and stereotactic body radiotherapy for patients with oligometastases : Final report of a prospective clinical trial. Target Oncol ePub May 2013.
- ¹⁰⁵Corn PG, Song DY, Heath E, et al. (2013) Sunitinib plus androgen deprivation and radiation therapy for patients with localized high-risk prostate cancer: results from a multi-institutional phase 1 study. Int J Radiat Oncol Biol Phys 86(3):540-5.
- ¹⁰⁶ Horti J, Widmark A, Stenzl A, et al. (2009) A randomized, double-blind, placebo-controlled phase II study of vandetanib plus docetaxel/prednisolone in patients with hormone-refractory prostate cancer. Cancer Biother Radiopharm 24(2):175-80.

Report Date 10 June 2016 Tumor Type Prostate acinar adenocarcinoma

APPENDIX

REFERENCES

¹⁰⁷ Wedge SR, Ogilvie DJ, Dukes M, et al. (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62(16):4645-55.

Report Date **10 June 2016** Tumor Type Prostate acinar adenocarcinoma

APPENDIX

ABOUT FOUNDATIONONE™

FoundationOneTM: FoundationOne was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

Diagnostic Significance: FoundationOne identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Test Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal): An alteration denoted as "amplification – equivocal" implies that the FoundationOne assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss – equivocal" implies that the FoundationOne assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne analytical methodology has identified as being present in <10% of the assayed tumor DNA.

The Report incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research.

NOTE: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Alterations and Drugs Not Presented in Ranked Order: In this Report, neither any biomarker alteration, nor any drug associated with potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Not Provided: Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

No Guarantee of Clinical Benefit: This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

No Guarantee of Reimbursement: Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne.

Treatment Decisions are Responsibility of Physician: Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment.

Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report.

Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne is performed using DNA derived from tumor, and as such germline events may not be reported. The following targets typically have low coverage resulting in a reduction in sensitivity: *SDHD* exon 6 and *TP53* exon 1.

FoundationOne complies with all European Union (EU) requirements of the IVD Directive 98/79EC. As such, the FoundationOne Assay has been registered for CE mark by our EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.