

Report Date **24 June 2016**

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

Date of Birth	05 April 2008	Medical Facility	Max Healthcare	Specimen Received	13 June 2016
Sex	Female	Ordering Physician	Verma, Amit	Specimen Site	Pleura
FMI Case #	TRF154823	Additional Recipient	Not Given	Date of Collection	06 April 2016
Medical Record #	SKMS.0000144534	Medical Facility ID #	201107	Specimen Type	Block
Specimen ID	S-6763 16A	Pathologist	Not Provided		

ABOUT THE TEST:

FoundationOne Heme™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

TUMOR TYPE: PEDIATRIC SOFT TISSUE RHABDOMYOSARCOMA (NOS) 1 genomic alteration Genomic Alteration Identified † TP53 R249S 1 clinical trial Reduced sensitivity due to sample quality – See Appendix: Performance Specifications for details.

THERAPEUTIC IMPLICATIONS

Gend	omic Alterations Detected	FDA-Approved Therapies (in patient's tumor type)	FDA-Approved Therapies (in another tumor type)	Potential Clinical Trials
TP53 R249S		None	None	Yes, see clinical trials section

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

[†] For a complete list of the genes assayed and performance specifications, please refer to the Appendix

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

GENOMIC ALTERATIONS

GENE ALTERATION

INTERPRETATION

• **TP53** R249S

Gene and Alteration: Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers¹. Mutations affecting the DNA binding domain (aa 100-292), the tetramerization domain (aa 325-356), or the C-terminal regulatory domain (aa 356-393), such as observed here, are thought to disrupt the transactivation of p53-dependent genes and are predicted to promote tumorigenesis²,³,4,5. Germline mutations in TP53 are associated with the very rare disorder Li-Fraumeni syndrome and the early onset of many cancers6,7,8,9,10,11. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000¹² to 1:20,000¹¹, and in the appropriate clinical context, germline testing of TP53 is recommended.

Frequency and Prognosis: TP53 mutations have been reported in 13% of rhabdomyosarcomas (COSMIC, Jun 2016). In a study of rhabdomyosarcomas that screened TP53 exons 5-9, TP53 mutation was reported in 22.2% (10/45) of cases¹³. However, another study reported lower incidence of TP53 mutations in a large collection of rhabdomyosarcoma samples (1/75, 1.3%); exons 4-9 were screened for TP53 mutations in this study¹⁴. A study examining 75 cases of rhabdomyosarcoma reported p53 overexpression in 31% (22 of 72) of the samples¹³.

Potential Treatment Strategies: There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor AZD1775^{15,16,17,18}, therapies that reactivate mutant p53 such as APR-246¹⁹, or p53 gene therapy and immunotherapeutics such as SGT-53^{20,21,22,23} and ALT-801 (Hajdenberg et al., 2012; ASCO Abstract e15010). Combination of AZD1775 with paclitaxel and carboplatin achieved significantly longer progression-free survival than paclitaxel and carboplatin alone in patients with TP53-mutant ovarian cancer (Oza et al., 2015; ASCO Abstract 5506). Furthermore, AZD1775 in combination with carboplatin achieved a 27% (6/22) response rate and 41% (9/22) stable disease rate in patients with TP53-mutant ovarian cancer refractory or resistant to carboplatin plus paclitaxel (Leijen et al., 2015; ASCO Abstract 2507). In a Phase 1 clinical trial, 8 of 11 evaluable patients receiving SGT-53 as a single agent exhibited stable disease²⁴. Clinical trials of SGT-53 in combination with chemotherapy are underway. Additionally, the combination of a CHK1 inhibitor and irinotecan reportedly reduced tumor growth and prolonged survival in a TP53 mutant, but not TP53 wild-type, breast cancer xenotransplant mouse model²⁵. Kevetrin has also been reported to activate p53 in preclinical studies and might be relevant in the context of mutant p53 (Kumar et al., 2012; AACR Abstract 2874). Clinical trials of these agents are under way for some tumor types for patients with a TP53 mutation.

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

THERAPIES

There are no therapies FDA-approved in this patient's tumor type that are specific to the reported genomic alterations.

There are no therapies FDA-approved in other tumor types that are specific to the reported genomic alterations.

Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have little or no evidence in the patient's tumor type.

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

CLINICAL TRIALS TO CONSIDER

IMPORTANT: While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or research staff. This is not meant to be a complete list of available trials. In order to conduct a more thorough search, please go to www.clinicaltrials.gov and use the search terms provided below. For more information about a specific clinical trial, type the NCT ID of the trial indicated below into the search bar.

GENE	RATIONALE FOR POTENTIAL CLINICAL TRIALS
	Tumors with TP53 loss of function alterations may be sensitive to WEE1 inhibitors, or p53 gene therapy and immunotherapeutics.
• <i>TP53</i> R249S	Examples of clinical trials that may be appropriate for this patient are listed below. These trials were identified through a search of the trial website clinicaltrials.gov using keyword terms such as "p53", "AZD1775", "MK1775", "WEE1", "APR-246", "kevetrin", "ALT-801", "SGT-53", "p53MVA", "rhabdomyosarcoma", "child", and/or "solid tumor".
	Due to the limited number of clinical trials recruiting pediatric patients, the list below may include trials that are only recruiting adult patients at this time.

TITLE	PHASE	TARGETS	LOCATIONS	NCT ID
A Phase I Study of SGT-53, a TfRscFv-Liposome-	Phase 1	TP53	Texas	NCT02354547
p53 Complex, in Children With Refractory or				
Recurrent Solid Tumors				

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations make their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

BARD1	ESR1	GPR124	HDAC7	HIST1H1D	<i>MAP3K1</i>
P358_S364del	A13T	R700W	P409L	E43K	K64Q
<i>MLL</i>	PCLO	PRKDC	SPEN	<i>ZRSR2</i>	
E1860D,S2319T	N3983S	S11fs*24	G3464A	S434_R435insRDR	
				S	

Report Date **24 June 2016**

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

GENES ASSAYED IN FOUNDATIONONE HEME

FoundationOne Heme is designed to include all genes known to be somatically altered in human hematologic malignancies, sarcomas, and pediatric cancers that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 405 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA Gene Li	DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations											
ABL1	ACTB	AKT1	AKT2	AKT3	ALK	AMER1	APC	APH1A	AR	ARAF	APFRP1	ARHGAP26
ARID1A	ARID2	ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL	B2M	BAP1
BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A	BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1
BRCA2	BRD4	BRIP1	BRSK1	BTG2	BTK	BTLA	C11orf30	CAD	CARD11	CBFB	CBL	CCND1
CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274	CD36	CD58	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2	CIC
CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R	CTCF	CTNNA1	CTNNB1	CUX1	CXCR4
DAXX	DDR2	DDX3X	DNM2	DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR
ELP2	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERG	ESR1	ETS1	ETV6
EXOSC6	EZH2	FAF1	FAM46C	FANCA	FANCC	FANCD2	FANCE	<i>FANCF</i>	FANCG	FANCL	FAS	FBXO11
FBXO31	FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1	FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1
GATA2	GATA3	GID4	GNA11	GNA12	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GSK3B	GTSE1	HDAC1
HDAC4	HDAC7	HGF	HIST1H1C	HIST1H1D	HIST1H1E	HIST1H2AC	HIST1H2AG	HIST1H2AL	HIST1H2AM	HIST1H2BC	HIST1H2BJ	HIST1H2BK
HIST1H2BO	HIST1H3B	HNF1A	HRAS	HSP90AA1	ICK	ID3	IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2
IKZF3	IL7R	INHBA	INPP4B	INPP5D	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3	JARID2
JUN	KAT6A	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KLHL6	KMT2A	KMT2B
KMT2C	KRAS	LEF1	LRP1B	LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEF2C	MEN1	MET	MIB1
MITF	MKI67	MLH1	MPL	MRE11A	MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL	MYCN
MYD88	MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1	NOTCH1	NOTCH2	NPM1
NRAS	NT5C2	NTRK1	NTRK2	NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK	PAX5
PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG
PIK3R1	PIK3R2	PIM1	PLCG2	POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A	RB1	RELN	RET	RHOA
RICTOR	RNF43	ROS1	RPTOR	RUNX1	S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2
SF3B1	SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO	SOCS1	SOCS2	SOCS3
SOX10	SOX2	SPEN	SPOP	SRC	SRSF2	STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11
SUFU	SUZ12	TAF1	TBL1XR1	TCF3	TCL1A	TET2	TGFBR2	TLL2	TMEM30A	TMSB4XP8	TNFAIP3	TNFRSF11A
TNFRSF14	TNFRSF17	TOP1	TP53	TP63	TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2
U2AF1	U2AF2	VHL	WDR90	WHSC1	WISP3	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217	ZNF24
ZNF703	ZRSR2											
DNA Gene Li	ist: For the De	tection Select	Rearrangeme	nts								
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR	ETV1	ETV4	ETV5	ETV6
EWSR1	FGFR2	IGH	IGK	IGL	JAK1	JAK2	KMT2A	MYC	NTRK1	PDGFRA	PDGFRB	RAF1
RARA	RET	ROS1	TMPRSS2	TRG								

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

RNA Gen	e List: Fo	r the Det	ection of	Select	Gene	Fusions
---------	------------	-----------	-----------	--------	------	----------------

ABI1	ABL1	ABL2	ACSL6	AFF1	AFF4	ALK	ARHGAP26	ARHGEF12	ARID1A	ARNT	ASXL1
ATF1	ATG5	ATIC	BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS	CBFA2T3	CBFB	CBL	CCND1	CCND2	CCND3
CD274	CDK6	CDX2	CHIC2	CHN1	CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL	COL1A1
CREB3L1	CREB3L2	CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22	EGFR
EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15	ERBB2	ERG	ETS1	ETV1
ETV4	ETV5	ETV6	EWSR1	FCGR2B	FCRL4	FEV	FGFR1	FGFR10P	FGFR2	FGFR3	FLI1
FNBP1	FOXO1	FOXO3	FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	<i>GMPS</i>	GPHN	HERPUD1
HEY1	HIP1	HIST1H4I	HLF	HMGA1	HMGA2	HOXA11	HOXA13	HOXA3	HOXA9	HOXC11	HOXC13
HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK	IGL	IKZF1	IL21R	IL3	IRF4	ITK
JAK1	JAK2	JAK3	JAZF1	KAT6A	KDSR	KIF5B	KMT2A	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	MECOM	MKL1	MLF1	MLLT1	MLLT10	MLLT3
MLLT4	MLLT6	MN1	MNX1	MSI2	MSN	MUC1	MYB	MYC	MYH11	MYH9	NACA
NBEAP1	NCOA2	NDRG1	NF1	NF2	NFKB2	N/N	NOTCH1	NPM1	NR4A3	NSD1	NTRK1
NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD	P2RY8	PAFAH1B2	PAX3	PAX5	PAX7
PBX1	PCM1	PCSK7	PDCD1LG2	PDE4DIP	PDGFB	<i>PDGFRA</i>	<i>PDGFRB</i>	PER1	PHF1	PICALM	PIM1
PLAG1	PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	PTCH1	PTK7	RABEP1	RAF1
RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213	ROS1	RPL22	RPN1	RUNX1	RUNX1T1
RUNX2	SEC31A	SEPT5	SEPT6	SEPT9	SET	SH3GL1	SLC1A2	SNX29	SRSF3	<i>SS18</i>	SSX1
SSX2	SSX4	STAT6	STL	SYK	TAF15	TAL1	TAL2	TBL1XR1	TCF3	TCL1A	TEC
TET1	TFE3	TFG	TFPT	TFRC	TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	TPM3
TPM4	TRIM24	TRIP11	TTL	TYK2	USP6	WHSC1	WHSC1L1	YPEL5	ZBTB16	ZMYM2	ZNF384
ZNF521											

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

FOUNDATIONONE HEME PERFORMANCE SPECIFICATIONS

	Base Substitutions at ≥5% Minor Allele Frequency					
SENSITIVITY	Insertions/Deletions (1-40 base pairs) at ≥10% Minor Allele Frequency	98%				
	Focal Copy Number Alterations (homozygous deletions or amplifications ≥8 copies)					
	Known Gene Fusions					
	Positive Predictive Value (PPV) for Base Substitutions, Insertions/Deletions, and Focal	>99%				
SPECIFICITY	Copy Number Alterations					
	Positive Predictive Value (PPV) for Known Gene Fusions	>95%				
DEDDOOLIGIBILITY	Concordance between replicates inter-batch	97%				
REPRODUCIBILITY	Concordance between replicates intra-batch	97%				

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

For additional information specific to the performance of this specimen, please contact Foundation Medicine, Inc. at 1-888-988-3639.

Il Reduced Sensitivity: Although we can definitively confirm the presence of the genomic alterations detailed in this report, the data obtained may have been insufficient for comprehensive detection of genomic alterations. Reduced sensitivity may be due to poor sample quality or, in rare cases, to patient transplant history or the receipt of only a pre-extracted DNA sample, precluding RNA sequencing.

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

REFERENCES

- ¹ Brown CJ, Lain S, Verma CS, et al. (2009) Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer 9(12):862-73.
- Kato S, Han SY, Liu W, et al. (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100(14):8424-9.
- ³ Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557-82.
- ⁴ Kamada R, Nomura T, Anderson CW, et al. (2011) Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286(1):252-8.
- ⁵ Kim H, Kim K, Choi J, et al. (2012) p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol 415(5):843-54.
- ⁶ Bougeard G, Renaux-Petel M, Flaman JM, et al. (2015) Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 33(21):2345-52.
- ⁷ Sorrell AD, Espenschied CR, Culver JO, et al. (2013) Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome: current status of clinical applications and future directions. Mol Diagn Ther 17(1):31-47.
- Nichols KE, Malkin D, Garber JE, et al. (2001) Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev 10(2):83-7.
- ⁹ Taubert H, Meye A, Würl P (1998) Soft tissue sarcomas and p53 mutations. Mol Med 4(6):365-72.
- ¹⁰ Kleihues P, Schäuble B, zur Hausen A, et al. (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150(1):1-13.
- ¹¹ Gonzalez KD, Noltner KA, Buzin CH, et al. (2009) Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250-6.
- ¹² Lalloo F, Varley J, Ellis D, et al. (2003) Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 361(9363):1101-2.
- ¹³ Takahashi Y, Oda Y, Kawaguchi K, et al. (2004) Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod Pathol 17(6):660-9.
- ¹⁴ Ognjanovic S, Martel G, Manivel C, et al. (2012) Low Prevalence of TP53 Mutations and MDM2 Amplifications in Pediatric Rhabdomyosarcoma. Sarcoma 2012:492086.
- ¹⁵ Hirai H, Arai T, Okada M, et al. (2010) MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 9(7):514-22.
- ¹⁶ Bridges KA, Hirai H, Buser CA, et al. (2011) MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 17(17):5638-48.
- ¹⁷ Rajeshkumar NV, De Oliveira E, Ottenhof N, et al. (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17(9):2799-806.
- ¹⁸ Osman AA, Monroe MM, Ortega Alves MV, et al. (2015) Wee-1 kinase inhibition overcomes cisplatin resistance associated with high-risk TP53 mutations in head and neck cancer through mitotic arrest followed by senescence. Mol Cancer Ther 14(2):608-19.
- ¹⁹ Lehmann S, Bykov VJ, Ali D, et al. (2012) Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol 30(29):3633-9.

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

REFERENCES

- ²⁰ Xu L, Huang CC, Huang W, et al. (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol Cancer Ther 1(5):337-46.
- ²¹ Xu L, Tang WH, Huang CC, et al. (2001) Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv. Mol Med 7(10):723-34.
- ²² Camp ER, Wang C, Little EC, et al. (2013) Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther 20(4):222-8.
- ²³ Kim SS, Rait A, Kim E, et al. (2015) A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine 11(2):301-11.
- ²⁴ Senzer N, Nemunaitis J, Nemunaitis D, et al. (2013) Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 21(5):1096-103.
- ²⁵ Ma CX, Cai S, Li S, et al. (2012) Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. J Clin Invest 122(4):1541-52.

Report Date 24 June 2016

Tumor Type
PEDIATRIC Soft tissue
rhabdomyosarcoma (NOS)

APPENDIX

ABOUT FOUNDATIONONE HEME™

FoundationOne Heme™: FoundationOne Heme (the Test) was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). The Test has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. The Test may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.

Diagnostic Significance: FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Test Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal): An alteration denoted as "amplification – equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss – equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

The Report incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research.

NOTE: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Alterations and Drugs Not Presented in Ranked Order: In this Report, neither any biomarker alteration, nor any drug associated with potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.

Level of Evidence Not Provided: Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

No Guarantee of Clinical Benefit: This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

No Guarantee of Reimbursement: Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of the Test.

Treatment Decisions are Responsibility of Physician: Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment.

Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report.

Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >40bp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported. The following targets typically have low coverage resulting in a reduction in sensitivity: *SDHD* exon 4, *TNFRSF11A* exon1, and *TP53* exon 1.

FoundationOne Heme complies with all European Union (EU) requirements of the IVD Directive 98/79EC. As such, the FoundationOne Heme Assay has been registered for CE mark by our EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

