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Date of Birth 03 May 1964 Medical Facility Max Healthcare Specimen Received 02 May 2016
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FMI Case # TRF151330 Additional Recipient Not Given Date of Collection 28 April 2016
Medical Record # Not Given Medical Facility ID # 201107 Specimen Type Block
Specimen ID M829/16A Pathologist Not Provided

ABOUT THE TEST:
FoundationOne™ is a next-generation sequencing (NGS) based assay that identifies genomic alterations within hundreds of cancer-related genes.

PATIENT RESULTS TUMOR TYPE:  BREAST CARCINOMA (NOS)

4 genomic alterations Genomic Alterations Identified†

AKT2  amplification
CCNE1  amplification
MCL1  amplification
TP53  R248Q

Additional Disease-relevant Genes with No Reportable
Alterations Identified†

ERBB2

2 therapies associated with potential clinical benefit

0 therapies associated with lack of response

6 clinical trials

† For a complete list of the genes assayed and performance specifications,
please refer to the Appendix

THERAPEUTIC IMPLICATIONS

Genomic Alterations
Detected

FDA-Approved Therapies
(in patient’s tumor type)

FDA-Approved Therapies
(in another tumor type) Potential Clinical Trials

AKT2
amplification

Everolimus Temsirolimus Yes, see clinical trials
section

CCNE1
amplification

None None None

MCL1
amplification

None None None

TP53
R248Q

None None None

Note: Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may
have little or no evidence in the patient’s tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or
predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient’s tumor type.
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GENOMIC ALTERATIONS

GENE
ALTERATION

INTERPRETATION

 AKT2
amplification

Gene and Alteration: AKT2 encodes an intracellular serine/threonine kinase that is also known as PKB-
beta. AKT2 is one of three members of the AKT gene family, and activation of AKT2 has been
implicated in multiple malignancies 1,2. AKT isoforms appear to have different roles in tumorigenesis;
AKT1 appears to contribute to tumor initiation, whereas AKT2 promotes invasion and metastasis in
breast tumors3. Although AKT2 amplification has been reported to associate with AKT2
overexpression4,5,6, studies in various cancers suggest that AKT2 phosphorylation may have greater
clinical relevance than AKT2 amplification or mRNA overexpression7,8.

Frequency and Prognosis: In the Breast Invasive Carcinoma TCGA dataset, putative high-level
amplification of AKT2 has been reported in 2.2% of cases 9; a similar incidence of 2.8% has been
reported in the scientific literature10. Although AKT2 amplification has been reported to be rare in breast
cancer, preclinical studies suggest that it may be associated with increased tumor invasion and
metastasis3,10. However, AKT2 expression has been found to be associated with reduced risk of distant
recurrence in estrogen receptor positive (ER+) breast cancer patients11.

Potential Treatment Strategies: Amplification of AKT2 may promote AKT-mTOR pathway activation
and may predict sensitivity to inhibitors of this pathway. AKT inhibitors are in clinical trials in various
tumor types and mTOR inhibitors have been FDA approved in breast cancer and other tumor types 12.
In preclinical studies, the AKT inhibitor MK-2206 showed evidence of enhancing anti-tumor activity of
other chemotherapeutic agents in lung and ovarian tumor cells13. In addition, a preclinical study in
breast and ovarian cancer cells correlated AKT2 activation with resistance to docetaxel14.

 CCNE1
amplification

Gene and Alteration: CCNE1 encodes the protein cyclin E1, which plays a role in the regulated
transition from the G1 to S phase by binding to and activating cyclin-dependent protein kinase 2
(CDK2). It also has a direct role in initiation of replication and maintenance of genomic stability 15.
Amplification of chromosomal region 19q12-q13, where CCNE1 resides, has been demonstrated in
multiple tumor types16,17,18. Increased copy number of CCNE1 is highly linked with overexpression of the
cyclin E1 protein17,19,20. Cyclin E1 overexpression can lead to cell transformation as a result of increased
cyclin E1 activity15,21.

Frequency and Prognosis: In the Breast Invasive Carcinoma TCGA dataset, putative high-level
amplification of CCNE1 has been reported in 2.8% of cases 9. An analysis of HER2-positive breast cancer
samples found CCNE1 amplification in 18-35% of patients22. However, a separate study reported that
CCNE1 gene overexpression occurred mainly in basal-like breast cancer, whereas overexpression of
CCNE2 was associated with HER2-positive and luminal B breast cancer subtypes23. CCNE1 amplification
and cyclin E1 overexpression have been correlated with poor prognosis in patients with breast
cancer24,25,26,27.
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GENE
ALTERATION

INTERPRETATION

Potential Treatment Strategies: There are no approved therapies that directly target CCNE1
alterations. Because cyclin E1 promotes cell cycle progression in a complex with CDK2 15, preclinical
studies have investigated CDK2 inhibitors as a potential therapeutic approach for tumors with CCNE1
activation. One preclinical study reported that CCNE1 amplification and/or overexpression largely
correlated with sensitivity of cultured and xenografted ovarian carcinoma cell lines to a CDK2 inhibitor
SNS-03228. However, other studies showed that sensitivity of various cell lines to CDK2 inhibitors,
including SNS-032, dinaciclib, and seliciclib, at clinically achievable doses, is largely independent of
CCNE1 copy number or expression22,29,30,31. One study reported a reduction in tumor CCNE1 levels in 4/6
lung and esophageal cancer cases following treatment with the HDAC inhibitor vorinostat, paralleling
findings from a CCNE1-driven mouse model of lung cancer, where vorinostat treatment led to tumor
reduction and a decrease in CCNE1 levels32. Amplification of CCNE1 has been linked to inferior clinical
benefit rate and progression-free survival in patients with HER2-positive breast cancer treated with
trastuzumab22. CCNE1 amplification has also been implicated in resistance to platinum-based therapies
in patients with ovarian carcinoma20,33,34,35, correlating with inferior survival in this population20,33.

 MCL1
amplification

Gene and Alteration: MCL1 (myeloid cell leukemia 1) encodes a member of the BCL2 family that
regulates programmed cell death or apoptosis 36. MCL1 has been reported to be amplified in cancer37

and may be biologically relevant in this context38,39.

Frequency and Prognosis: In the TCGA datasets, MCL1 amplification was observed in 9-14% of invasive
breast carcinoma cases 9,40. Additionally, increased copy number of the MCL1 region has been reported
in 36% of breast tumor samples in other studies39. Elevated MCL1 protein expression has been
associated with high tumor grade and poor patient prognosis in breast cancer41.

Potential Treatment Strategies: There are no FDA-approved therapies to address MCL1 amplification,
but investigations focused on inhibitors of MCL1 are under way 42. In addition, clinical trials of some
agents that target BCL2 may be relevant for tumors with MCL1 amplification, although MCL1 expression
has been associated with resistance to other BCL2-targeted agents (including ABT-263 and ABT-
737)43,44,45,46,47,48. Indirect approaches using therapeutic agents that reduce MCL1 expression are also
being investigated49. Preclinical studies have shown that the multikinase inhibitor sorafenib indirectly
downregulates MCL150,51,52,53,54 and synergizes with other agents, such as TRAIL50,53,55,56, a BCL-XL
inhibitor51, or an mTOR inhibitor52, to induce cell death. Other preclinical studies suggest that another
avenue to address MCL1 amplification may be the use of CDK2/7/9 inhibitors in combination with other
agents57,58. Clinical trials are investigating the use of CDK2/7/9 inhibitors, alone or in combination with
other therapies, in solid tumors. In addition, preclinical studies of patient-derived tumor cells suggest
that increased MCL1 levels may confer resistance to anti-tubulin therapies such as paclitaxel59.

 TP53
R248Q

Gene and Alteration: Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene,
is common in aggressive advanced cancers 60. Mutations affecting the DNA binding domain (aa 100-
292), the tetramerization domain (aa 325-356), or the C-terminal regulatory domain (aa 356-393), such
as observed here, are thought to disrupt the transactivation of p53-dependent genes and are predicted
to promote tumorigenesis61,62,63,64. Germline mutations in TP53 are associated with the very rare
disorder Li-Fraumeni syndrome and the early onset of many cancers65,66,67,68,69,70. Estimates for the
prevalence of germline TP53 mutations in the general population range from 1:5,00071 to 1:20,00070,
and in the appropriate clinical context, germline testing of TP53 is recommended.
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INTERPRETATION

Frequency and Prognosis: TP53 is one of the most commonly mutated genes in breast cancer, and
mutations in this gene have been identified in 27-37% of breast carcinoma samples 9,72,73,74,75,76. TP53
mutations within the region encoding the DNA binding domain have been reported to be associated
with poor prognosis in patients with breast cancer76,77,78. In addition, TP53 mutation carriers have an 18-
60 fold increased risk for early onset breast cancer79,80,81.

Potential Treatment Strategies: There are no approved therapies to address TP53 mutation or loss.
However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor
AZD177582,83,84,85, therapies that reactivate mutant p53 such as APR-24686, or p53 gene therapy and
immunotherapeutics such as SGT-5387,88,89,90 and ALT-801 (Hajdenberg et al., 2012; ASCO Abstract
e15010). Combination of AZD1775 with paclitaxel and carboplatin achieved significantly longer
progression-free survival than paclitaxel and carboplatin alone in patients with TP53-mutant ovarian
cancer (Oza et al., 2015; ASCO Abstract 5506). Furthermore, AZD1775 in combination with carboplatin
achieved a 27% (6/22) response rate and 41% (9/22) stable disease rate in patients with TP53-mutant
ovarian cancer refractory or resistant to carboplatin plus paclitaxel (Leijen et al., 2015; ASCO Abstract
2507). In a Phase 1 clinical trial, 8 of 11 evaluable patients receiving SGT-53 as a single agent exhibited
stable disease91. Clinical trials of SGT-53 in combination with chemotherapy are underway. Additionally,
the combination of a CHK1 inhibitor and irinotecan reportedly reduced tumor growth and prolonged
survival in a TP53 mutant, but not TP53 wild-type, breast cancer xenotransplant mouse model92.
Kevetrin has also been reported to activate p53 in preclinical studies and might be relevant in the
context of mutant p53 (Kumar et al., 2012; AACR Abstract 2874). Clinical trials of these agents are under
way for some tumor types for patients with a TP53 mutation.
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THERAPIES

FDA-APPROVED THERAPIES IN PATIENT TUMOR TYPE
THERAPY SUMMARY OF DATA IN PATIENT TUMOR TYPE

Everolimus Approved Indications: Everolimus is an orally available mTOR inhibitor that is FDA approved to treat
renal cell carcinoma following antiangiogenic therapy; pancreatic neuroendocrine tumors and well-
differentiated non-functional neuroendocrine tumors of the lung or gastrointestinal tract; and, in
association with tuberous sclerosis complex (TSC), renal angiomyolipoma and subependymal giant
cell astrocytoma. Everolimus is also approved to treat hormone receptor-positive, HER2-negative
advanced breast cancer in combination with exemestane following prior therapy with letrozole or
anastrozole.
Gene Association: Amplification of AKT2 may promote AKT-mTOR pathway activation and may
predict sensitivity to inhibitors of this pathway such as everolimus. However, studies in various
cancers suggest that AKT2 phosphorylation may have greater clinical relevance than AKT2
amplification or mRNA overexpression 7,8.
Supporting Data: Addition of everolimus to exemestane as second-line therapy for hormone
receptor-positive (HR+), HER2-negative breast cancer improved median progression-free survival
(PFS) compared to exemestane alone (11.5 vs. 4.1 months) and showed a trend to longer overall
survival (31.0 vs. 26.6 months) 12,93,94. Clinical studies for patients with HR+ breast cancer indicate that
everolimus may potentiate letrozole or tamoxifen efficacy and can be safely combined with
anastrozole95,96,97. Two Phase 3 trials have evaluated whether addition of everolimus would circumvent
or overcome resistance of HER2-positive (HER2+) breast cancer to trastuzumab-based therapy: As first-
line treatment for patients with HER2+ breast cancer, everolimus combined with trastuzumab plus
paclitaxel did not significantly improve median PFS in the full study population (15.0 months with
everolimus vs. 14.5 months with placebo) but increased PFS in the HR-negative subpopulation (20.3 vs.
13.1 months)98. For patients with trastuzumab-resistant HER2+ breast cancer, the addition of
everolimus to trastuzumab plus vinorelbine prolonged median PFS (7.0 vs. 5.8 months)99. Follow-up
exploratory analysis showed that patients with PIK3CA alterations achieved longer median PFS with
everolimus vs. placebo (hazard ratio [HR] = 0.69), when combined with trastuzumab plus paclitaxel
(12.0 vs. 7.6 months) or vinorelbine (6.9 vs. 5.7 months)(Slamon et al., 2015; ASCO Abstract 512). Low
PTEN expression or PTEN loss also was significantly associated with benefit from added everolimus in
the combined analysis of both studies (HR = 0.50) (Slamon et al., 2015; ASCO Abstract 512)99. For
patients with metastatic triple-negative breast cancer, everolimus plus carboplatin achieved a clinical
benefit rate of 36% (9/25)100. A Phase 1b trial of a combination of everolimus and the MEK inhibitor
trametinib in patients with solid tumors reported frequent adverse events, and the study was unable
to identify a recommended Phase 2 dose and schedule for the combination101.
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ADDITIONAL THERAPIES – FDA-APPROVED IN OTHER TUMOR TYPES
THERAPY SUMMARY OF DATA IN OTHER TUMOR TYPE

Temsirolimus Approved Indications: Temsirolimus is an intravenous mTOR inhibitor that is FDA approved for the
treatment of advanced renal cell carcinoma.
Gene Association: Amplification of AKT2 may promote AKT-mTOR pathway activation and may
predict sensitivity to inhibitors of this pathway such as temsirolimus. However, studies in various
cancers suggest that AKT2 phosphorylation may have greater clinical relevance than AKT2
amplification or mRNA overexpression 7,8.
Supporting Data: A Phase 1 trial examining the combination of temsirolimus, liposomal doxorubicin,
and bevacizumab in 74 patients with breast and gynecological malignancies reported that 37.9% of
patients experienced either a complete response (1.4%), partial response (18.9%), or stable disease
(17.6%); among 25 patients with PIK3CA mutation or PTEN loss, 52% experienced a complete or
partial response (36%) or stable disease (16%) 102. Another Phase 1 trial including patients with several
types of cancer reported a 42% incidence of complete or partial responses in patients with metastatic
breast cancer103. However, a Phase 2 study of temsirolimus in pretreated patients with metastatic
breast cancer reported minimal clinical activity and no association with PTEN protein or PIK3CA
mutation status104. A Phase 3 placebo-controlled trial of letrozole plus oral temsirolimus as first-line
endocrine therapy in postmenopausal women with locally advanced or metastatic breast cancer was
terminated at the second interim since the addition of temsirolimus to letrozole did not improve
progression-free survival as a first-line therapy105. A study examining the efficacy of temsirolimus-
involving regimens in 24 patients with mesenchymal/metaplastic breast cancer (MpBCs) reported 2
complete responses, 4 partial responses, 2 instances of stable disease >6 months, and 4 instances of
stable disease <6 months106.

Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have
little or no evidence in the patient’s tumor type.
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CLINICAL TRIALS TO CONSIDER

IMPORTANT: While every effort is made to ensure the accuracy of the information contained below, the information available in
the public domain is continually updated and should be investigated by the physician or research staff. This is not meant to be a
complete  list  of  available  trials.   In  order  to  conduct  a  more  thorough  search,  please  go  to  www.clinicaltrials.gov  and  use  the
search terms provided below.  For more information about a specific clinical trial, type the NCT ID of the trial indicated below into
the search bar.

 GENE RATIONALE FOR POTENTIAL CLINICAL TRIALS

• AKT2
amplification

AKT2 amplification may lead to AKT-mTOR pathway activation and may predict sensitivity to inhibitors
of this pathway.

Examples of clinical trials that may be appropriate for this patient are listed below. These trials were
identified through a search of the trial website clinicaltrials.gov using keyword terms such as "AKT",
"mTOR", "everolimus", "temsirolimus", "API-1", "MK-2206", "perifosine", "breast carcinoma", "solid
tumor", and/or "advanced cancer".

TITLE PHASE TARGETS LOCATIONS NCT ID
A Phase Ib Study of the Oral PARP Inhibitor
Olaparib With the Oral mTORC1/2 Inhibitor
AZD2014 or the Oral AKT Inhibitor AZD5363 for
Recurrent Endometrial, Triple Negative Breast,
and Ovarian, Primary Peritoneal, or Fallopian
Tube Cancer

Phase
1/Phase
2

mTORC1,
mTORC2, AKT

Texas NCT02208375

A Phase I, First-in-Human, Dose Escalation Trial
of MSC2363318A, a Dual p70S6K/Akt Inhibitor,
in Subjects With Advanced Malignancies

Phase 1 AKT, p70S6K California, Michigan, Texas,
Vermont

NCT01971515

A Phase I Multi-centre Trial of the Combination
of Olaparib (PARP Inhibitor) and AZD5363 (AKT
Inhibitor) in Patients With Advanced Solid
Tumours

Phase 1 PARP, AKT Newcastle upon Tyne (United
Kingdom), Surrey (United
Kingdom)

NCT02338622

A Phase Ib Trial of LEE011 in Combination With
Everolimus (RAD001) and Exemestane in the
Treatment of Postmenopausal Women With
Hormone Receptor Positive, HER2 Negative
Locally Advanced or Metastatic Breast Cancer

Phase
1/Phase
2

mTOR,
Aromatase,
CDK4, CDK6

Massachusetts, Michigan, New
York, Texas, Catalunya (Spain),
Hong Kong (Hong Kong), Saint
Herblain cedex (France), Wilrijk
(Belgium)

NCT01857193

A Multicenter, Open-label, Phase 1b Study of
MLN0128 (an Oral mTORC1/2 Inhibitor) in
Combination With MLN1117 (an Oral PI3Kα
Inhibitor) in Adult Patients With Advanced
Nonhematologic Malignancies

Phase 1 mTORC1,
mTORC2,
PI3K-alpha

Massachusetts, Tennessee,
Texas, Barcelona (Spain),
Sutton (United Kingdom)

NCT01899053

A RANDOMIZED, PHASE II, MULTI-CENTER,
PLACEBO-CONTROLLED STUDY OF IPATASERTIB
(GDC-0068), AN INHIBITOR OF AKT, IN
COMBINATION WITH PACLITAXEL AS FRONT-
LINE TREATMENT FOR PATIENTS WITH
METASTATIC TRIPLE-NEGATIVE BREAST
CANCER

Phase 2 AKT Campania (Italy), Lombardia
(Italy), Singapore (Singapore),
Taichung (Taiwan), Taipei
(Taiwan), Taoyuan (Taiwan),
Veneto (Italy), Wilrijk (Belgium)

NCT02162719
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APPENDIX

VARIANTS OF UNKNOWN SIGNIFICANCE

Note: One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been
adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these
alterations make their significance unclear. We choose to include them here in the event that they become clinically meaningful in
the future.

ATM
T1156A

CYLD
G431E

LZTR1
A662V,E522K

ROS1
T2052N

BRCA1
G1801D

ERRFI1
A435S

MLL3
L2420V,V125I

RPTOR
K948R

CD274
amplification

GATA3
amplification

PARK2
P180L

ZNF703
H402_D403>PTHL
GGSSCSTCSAHD

CDKN2A
amplification

GATA4
P394T

PBRM1
rearrangement

CDKN2B
amplification

IKBKE
S31C

PDCD1LG2
amplification

CEBPA
amplification

JAK2
amplification

POLE
V240L
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APPENDIX

GENES ASSAYED IN FOUNDATIONONE

FoundationOne is designed to include all genes known to be somatically altered in human solid tumors that are validated targets for
therapy,  either  approved or  in  clinical  trials,  and/or  that  are  unambiguous drivers  of  oncogenesis  based on current  knowledge.  The
current assay interrogates 315 genes as well as introns of 28 genes involved in rearrangements. The assay will be updated periodically
to reflect new knowledge about cancer biology.

DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations
ABL1 ABL2 ACVR1B AKT1 AKT2 AKT3 ALK AMER1 (FAM123B) APC AR

ARAF ARFRP1 ARID1A ARID1B ARID2 ASXL1 ATM ATR ATRX AURKA

AURKB AXIN1 AXL BAP1 BARD1 BCL2 BCL2L1 BCL2L2 BCL6 BCOR

BCORL1 BLM BRAF BRCA1 BRCA2 BRD4 BRIP1 BTG1 BTK C11orf30 (EMSY)

CARD11 CBFB CBL CCND1 CCND2 CCND3 CCNE1 CD274 CD79A CD79B

CDC73 CDH1 CDK12 CDK4 CDK6 CDK8 CDKN1A CDKN1B CDKN2A CDKN2B

CDKN2C CEBPA CHD2 CHD4 CHEK1 CHEK2 CIC CREBBP CRKL CRLF2

CSF1R CTCF CTNNA1 CTNNB1 CUL3 CYLD DAXX DDR2 DICER1 DNMT3A

DOT1L EGFR EP300 EPHA3 EPHA5 EPHA7 EPHB1 ERBB2 ERBB3 ERBB4

ERG ERRFI1 ESR1 EZH2 FAM46C FANCA FANCC FANCD2 FANCE FANCF

FANCG FANCL FAS FAT1 FBXW7 FGF10 FGF14 FGF19 FGF23 FGF3

FGF4 FGF6 FGFR1 FGFR2 FGFR3 FGFR4 FH FLCN FLT1 FLT3

FLT4 FOXL2 FOXP1 FRS2 FUBP1 GABRA6 GATA1 GATA2 GATA3 GATA4

GATA6 GID4 (C17orf39) GLI1 GNA11 GNA13 GNAQ GNAS GPR124 GRIN2A GRM3

GSK3B H3F3A HGF HNF1A HRAS HSD3B1 HSP90AA1 IDH1 IDH2 IGF1R

IGF2 IKBKE IKZF1 IL7R INHBA INPP4B IRF2 IRF4 IRS2 JAK1

JAK2 JAK3 JUN KAT6A (MYST3) KDM5A KDM5C KDM6A KDR KEAP1 KEL

KIT KLHL6 KMT2A (MLL) KMT2C (MLL3) KMT2D (MLL2) KRAS LMO1 LRP1B LYN LZTR1

MAGI2 MAP2K1 MAP2K2 MAP2K4 MAP3K1 MCL1 MDM2 MDM4 MED12 MEF2B

MEN1 MET MITF MLH1 MPL MRE11A MSH2 MSH6 MTOR MUTYH

MYC MYCL (MYCL1) MYCN MYD88 NF1 NF2 NFE2L2 NFKBIA NKX2-1 NOTCH1

NOTCH2 NOTCH3 NPM1 NRAS NSD1 NTRK1 NTRK2 NTRK3 NUP93 PAK3

PALB2 PARK2 PAX5 PBRM1 PDCD1LG2 PDGFRA PDGFRB PDK1 PIK3C2B PIK3CA

PIK3CB PIK3CG PIK3R1 PIK3R2 PLCG2 PMS2 POLD1 POLE PPP2R1A PRDM1

PREX2 PRKAR1A PRKCI PRKDC PRSS8 PTCH1 PTEN PTPN11 QKI RAC1

RAD50 RAD51 RAF1 RANBP2 RARA RB1 RBM10 RET RICTOR RNF43

ROS1 RPTOR RUNX1 RUNX1T1 SDHA SDHB SDHC SDHD SETD2 SF3B1

SLIT2 SMAD2 SMAD3 SMAD4 SMARCA4 SMARCB1 SMO SNCAIP SOCS1 SOX10

SOX2 SOX9 SPEN SPOP SPTA1 SRC STAG2 STAT3 STAT4 STK11

SUFU SYK TAF1 TBX3 TERC
TERT
(promoter_only) TET2 TGFBR2 TNFAIP3 TNFRSF14

TOP1 TOP2A TP53 TSC1 TSC2 TSHR U2AF1 VEGFA VHL WISP3

WT1 XPO1 ZBTB2 ZNF217 ZNF703

DNA Gene List: For the Detection Select Rearrangements
ALK BCL2 BCR BRAF BRCA1 BRCA2 BRD4 EGFR ETV1 ETV4

ETV5 ETV6 FGFR1 FGFR2 FGFR3 KIT MSH2 MYB MYC NOTCH2

NTRK1 NTRK2 PDGFRA RAF1 RARA RET ROS1 TMPRSS2
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APPENDIX

FOUNDATIONONE PERFORMANCE SPECIFICATIONS

ACCURACY

Sensitivity: Base Substitutions
At Mutant Allele Frequency  ≥10% >99.9% (CI* 99.6%-100%)

At Mutant Allele Frequency  5-10% 99.3% (CI* 98.3%-99.8%)

Sensitivity: Insertions/Deletions (1-40 bp)
At Mutant Allele Frequency  ≥20% 97.9% (CI* 92.5%-99.7%)

At Mutant Allele Frequency 10-20% 97.3% (CI* 90.5%-99.7%)

Sensitivity: Copy Number Alterations—Amplifications
(ploidy <4, Amplification with  Copy Number ≥8)

At ≥30% tumor nuclei >99.0% (CI* 93.6%-100%)

At   20% tumor nuclei 92.6% (CI* 66.1%-99.8%)

Sensitivity: Copy Number Alterations—Deletions
(ploidy <4, Homozygous Deletions)

At ≥30% tumor nuclei 97.2% (CI* 85.5%-99.9%)

At   20% tumor nuclei 88.9% (CI* 51.8%-99.7%)

Sensitivity: Rearrangements (selected rearrangements in specimens with ≥20% tumor nuclei)**
>90.0% 1

>99.0% for ALK fusion2

(CI* 89.1%-100%)

Specificity of all variant types Positive Predictive Value (PPV) >99.0%

REPRODUCIBILITY (average concordance between replicates)
96.4%
98.9%

inter-batch precision
intra-batch precision

-- ---

*95% Confidence Interval
** Performance for gene fusions within targeted introns only. Sensitivity for gene fusions occurring outside targeted introns or in highly repetitive

intronic sequence contexts is reduced.
1 Based on analysis of coverage and re-arrangement structure in the COSMIC database for the solid tumor fusion genes where alteration
prevalence could be established, complemented by detection of exemplar rearrangements in cell line titration experiments.

2 Based on ALK re-arrangement concordance analysis vs. a standard clinical FISH assay described in: Yelensky, R. et al. Analytical validation of
solid tumor fusion gene detection in a comprehensive NGS-based clinical cancer genomic test, In: Proceedings of the 105th Annual Meeting of
the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; 2014. Abstract nr 4699 

Assay specifications were determined for typical median exon coverage of approximately 500X. For additional information regarding the
validation of FoundationOne, please refer to the article, Frampton, GM. et al. Development and validation of a clinical cancer genomic profiling
test based on massively parallel DNA sequencing, Nat Biotechnol (2013 Oct. 20).

For additional information specific to the performance of this specimen, please contact Foundation Medicine, Inc. at 1-888-988-3639.
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determined that  such clearance or  approval  is  not  necessary.  FoundationOne may be used for  clinical  purposes  and should not  be regarded
as  purely  investigational  or  for  research  only.  Foundation  Medicine’s  clinical  reference  laboratory  is  certified  under  the  Clinical  Laboratory
Improvement Amendments of 1988 (CLIA) as qualified to perform high-complexity clinical testing.
Diagnostic  Significance:  FoundationOne  identifies  alterations  to  select  cancer-associated  genes  or  portions  of  genes  (biomarkers).  In  some
cases, the Test Report also highlights selected negative test results regarding biomarkers of clinical significance.
Qualified  Alteration  Calls  (Equivocal  and  Subclonal):  An  alteration  denoted  as  “amplification  –  equivocal”  implies  that  the  FoundationOne
assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number
amplification.  The threshold used in FoundationOne for  identifying a  copy number amplification is  five (5)  for  ERBB2 and six  (6)  for  all  other
genes.  Conversely,  an  alteration  denoted  as  “loss  –  equivocal”  implies  that  the  FoundationOne  assay  data  provide  some,  but  not
unambiguous,  evidence  for  homozygous  deletion  of  the  gene  in  question.  An  alteration  denoted  as  “subclonal”  is  one  that  the
FoundationOne analytical methodology has identified as being present in <10% of the assayed tumor DNA.
The  Report  incorporates  analyses  of  peer-reviewed  studies  and  other  publicly  available  information  identified  by  Foundation  Medicine;
these  analyses  and information  may include associations  between a  molecular  alteration  (or  lack  of  alteration)  and one or  more  drugs  with
potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research.
NOTE:  A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment
regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug
or treatment regimen.
Alterations  and  Drugs  Not  Presented  in  Ranked  Order:  In  this  Report,  neither  any  biomarker  alteration,  nor  any  drug  associated  with
potential clinical benefit (or potential lack of clinical benefit), are ranked in order of potential or predicted efficacy.
Level  of  Evidence  Not  Provided:  Drugs  with  potential  clinical  benefit  (or  potential  lack  of  clinical  benefit)  are  not  evaluated  for  source  or
level of published evidence.
No  Guarantee  of  Clinical  Benefit:  This  Report  makes  no  promises  or  guarantees  that  a  particular  drug  will  be  effective  in  the  treatment  of
disease  in  any  patient.  This  Report  also  makes  no  promises  or  guarantees  that  a  drug  with  potential  lack  of  clinical  benefit  will  in  fact
provide no clinical benefit.
No Guarantee of  Reimbursement:  Foundation Medicine makes no promises or  guarantees that  a  healthcare provider,  insurer or  other third
party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne.
Treatment  Decisions  are  Responsibility  of  Physician:  Drugs  referenced  in  this  Report  may  not  be  suitable  for  a  particular  patient.  The
selection of any, all  or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within
the  discretion  of  the  treating  physician.  Indeed,  the  information  in  this  Report  must  be  considered  in  conjunction  with  all  other  relevant
information regarding a particular patient, before the patient’s treating physician recommends a course of treatment.
Decisions  on  patient  care  and  treatment  must  be  based  on  the  independent  medical  judgment  of  the  treating  physician,  taking  into
consideration  all  applicable  information  concerning  the  patient’s  condition,  such  as  patient  and  family  history,  physical  examinations,
information  from other  diagnostic  tests,  and  patient  preferences,  in  accordance  with  the  standard  of  care  in  a  given  community.  A  treating
physician’s decisions should not be based on a single test, such as this Test, or the information contained in this Report.
Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low
sample  quality  or  with  homozygous  losses  of  <3  exons;  and  deletions  and  insertions  >40bp,  or  in  repetitive/high  homology  sequences.
FoundationOne is performed using DNA derived from tumor, and as such germline events may not be reported.  The following targets typically
have low coverage resulting in a reduction in sensitivity: SDHD exon 6 and TP53 exon 1.

FoundationOne complies with all European Union (EU) requirements of the IVD Directive 98/79EC.  As such, the FoundationOne Assay
has been registered for CE mark by our EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.


